- ID:
- ivo://CDS.VizieR/J/A+A/603/A55
- Title:
- WISE/NEOWISE Mars-crossing asteroids
- Short Name:
- J/A+A/603/A55
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Mars-crossing asteroids (MCs) are a dynamically unstable group between the main belt and the near-Earth populations. Characterising the physical properties of a large sample of MCs can help to understand the original sources of many near-Earth asteroids, some of which may produce meteorites on Earth. Our aim is to provide diameters and albedos of MCs with available WISE/NEOWISE data. We used the near-Earth asteroid thermal model to find the best-fitting values of equivalent diameter and, whenever possible, the infrared beaming parameter. With the diameter and tabulated asteroid absolute magnitudes we also computed the visible geometric albedos. We determined the diameters and beaming parameters of 404 objects observed during the fully cryogenic phase of the WISE mission, most of which have not been published elsewhere. We also obtained 1572 diameters from data from the 3-Band and posterior non-cryogenic phases using a default value of beaming parameter. The average beaming parameter is 1.2+/-0.2 for objects smaller than 10km, which constitute most of our sample. This is higher than the typical value of 1.0 found for the whole main belt and is possibly related to the fact that WISE is able to observe many more small objects at shorter heliocentric distances, i.e. at higher phase angles. We argue that this is a better default value for modelling Mars-crossing asteroids from the WISE/NEOWISE catalogue and discuss the effects of this choice on the diameter and albedo distributions. We find a double-peaked distribution for the visible geometric albedos, which is expected since this population is compositionally diverse and includes objects in the major spectral complexes. However, the distribution of beaming parameters is homogeneous for both low- and high-albedo objects.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/760/L12
- Title:
- WISE/NEOWISE NEOs preliminary thermal fits
- Short Name:
- J/ApJ/760/L12
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Enhancements to the science data processing pipeline of NASA's Wide-field Infrared Survey Explorer (WISE) mission, collectively known as NEOWISE, resulted in the detection of >158000 minor planets in four infrared wavelengths during the fully cryogenic portion of the mission. Following the depletion of its cryogen, NASA's Planetary Science Directorate funded a four-month extension to complete the survey of the inner edge of the Main Asteroid Belt and to detect and discover near-Earth objects (NEOs). This extended survey phase, known as the NEOWISE Post-Cryogenic Survey, resulted in the detection of ~6500 large Main Belt asteroids and 86 NEOs in its 3.4 and 4.6{mu}m channels. During the Post-Cryogenic Survey, NEOWISE discovered and detected a number of asteroids co-orbital with the Earth and Mars, including the first known Earth Trojan. We present preliminary thermal fits for these and other NEOs detected during the 3-Band Cryogenic and Post-Cryogenic Surveys.
- ID:
- ivo://CDS.VizieR/J/AJ/154/53
- Title:
- WISE/NEOWISE observations of comets
- Short Name:
- J/AJ/154/53
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We use NEOWISE data from the four-band and three-band cryogenic phases of the Wide-field Infrared Survey Explorer mission to constrain size distributions of the comet populations and debias measurements of the short- and long-period comet (LPC) populations. We find that the fit to the debiased LPC population yields a cumulative size-frequency distribution (SFD) power-law slope ({beta}) of -1.0+/-0.1, while the debiased Jupiter-family comet (JFC) SFD has a steeper slope with {beta}=-2.3+/-0.2. The JFCs in our debiased sample yielded a mean nucleus size of 1.3km in diameter, while the LPCs' mean size is roughly twice as large, 2.1km, yielding mean size ratios (<D_LPC_>/<D_JFC_>) that differ by a factor of 1.6. Over the course of the 8 months of the survey, our results indicate that the number of LPCs passing within 1.5 au are a factor of several higher than previous estimates, while JFCs are within the previous range of estimates of a few thousand down to sizes near 1.3km in diameter. Finally, we also observe evidence for structure in the orbital distribution of LPCs, with an overdensity of comets clustered near 110{deg} inclination and perihelion near 2.9 au that is not attributable to observational bias.
- ID:
- ivo://CDS.VizieR/J/ApJ/744/197
- Title:
- WISE/NEOWISE observations of Hilda asteroids
- Short Name:
- J/ApJ/744/197
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the preliminary analysis of 1023 known asteroids in the Hilda region of the solar system observed by the NEOWISE component of the Wide-field Infrared Survey Explorer (WISE). The sizes of the Hildas observed range from ~3 to 200km. We find no size-albedo dependency as reported by other projects. The albedos of our sample are low, with a weighted mean value of p_V_=0.055+/-0.018, for all sizes sampled by the NEOWISE survey. We observed a significant fraction of the objects in the two known collisional families in the Hilda population. It is found that the Hilda collisional family is brighter, with a weighted mean albedo of p_V_=0.061+/-0.011, than the general population and dominated by D-type asteroids, while the Schubart collisional family is darker, with a weighted mean albedo of p_V_=0.039+/-0.013. Using the reflected sunlight in the two shortest WISE bandpasses, we are able to derive a method for taxonomic classification of ~10% of the Hildas detected in the NEOWISE survey. For the Hildas with diameter larger than 30km, there are 67^+7^_-15_% D-type asteroids and 26^+17^_-5_% C-/P-type asteroids (with the majority of these being P-types).
- ID:
- ivo://CDS.VizieR/J/ApJ/759/L8
- Title:
- WISE/NEOWISE observations of main belt asteroids
- Short Name:
- J/ApJ/759/L8
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present preliminary diameters and albedos for 13511 Main Belt asteroids (MBAs) that were observed during the 3-Band Cryo phase of the Wide-field Infrared Survey Explorer (WISE; after the outer cryogen tank was exhausted) and as part of the NEOWISE Post-Cryo Survey (after the inner cryogen tank was exhausted). With a reduced or complete loss of sensitivity in the two long wavelength channels of WISE, the uncertainty in our fitted diameters and albedos is increased to ~20% for diameter and ~40% for albedo. Diameter fits using only the 3.4 and 4.6 {mu}m channels are shown to be dependent on the literature optical H absolute magnitudes. These data allow us to increase the number of size estimates for large MBAs which have been identified as members of dynamical families. We present thermal fits for 14 asteroids previously identified as the parents of a dynamical family that were not observed during the fully cryogenic mission.
- ID:
- ivo://CDS.VizieR/J/AJ/155/50
- Title:
- WISE photometry of Be stars in young open clusters
- Short Name:
- J/AJ/155/50
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Through the modeling of near-infrared photometry of star-plus disk systems with the codes BEDISK/BERAY, we successfully describe the Wide-Field Infrared Survey Explorer (WISE) photometric characteristics of Be stars in five young open clusters, NGC 663, NGC 869, NGC 884, NGC 3766, and NGC 4755, broadly studied in the literature. WISE photometry allows previously known Be stars to be detected and to find new Be candidates which could be confirmed spectroscopically. The location of Be stars in the WISE color-magnitude diagram, separates them in two groups; active (Be stars hosting a developed circumstellar disk) and quiescent objects (Be stars in a diskless phase), and this way, we can explore how often stars are observed in these different stages. The variability observed in most active variable Be stars is compatible with a disk dissipation phase. We find that 50% of Be stars in the studied open clusters are in an active phase. We can interpret this as Be stars having a developed circumstellar disk one-half of the time. The location of Be stars with a developed disk in the color-magnitude diagram require mass loss rates in agreement with values recently reported in the literature. For these objects, we expect to have a tight relation between the equivalent width of the H{alpha} line and the mass of the disk, if the inclination is known. Also, near-infrared photometry of Be stars in stellar clusters has the potential of being useful to test whether there is a preferential viewing angle.
- ID:
- ivo://CDS.VizieR/J/ApJ/797/55
- Title:
- WISE photometry of dust-free stellar systems
- Short Name:
- J/ApJ/797/55
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Using data from the Wide-field Infrared Survey Explorer mission, we have measured near infra-red (NIR) photometry of a diverse sample of dust-free stellar systems (globular clusters, dwarf and giant early-type galaxies) which have metallicities that span the range -2.2<[Fe/H](dex)<0.3.
- ID:
- ivo://CDS.VizieR/II/307
- Title:
- WISE Preliminary Data Release
- Short Name:
- II/307
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Wide-field Infrared Survey Explorer (WISE; see Wright et al. 2010AJ....140.1868W) is a NASA Medium Class Explorer mission that conducted a digital imaging survey of the entire sky in the 3.4, 4.6, 12 and 22um mid-infrared bandpasses (hereafter W1, W2, W3 and W4). WISE will produce and release to the world astronomical and educational communities and general public a digital Image Atlas covering the sky in the four survey bands, and a reliable Source Catalog containing accurate photometry and astrometry for over 300 million objects. The WISE Catalog and Atlas will enable a broad variety of research efforts ranging from the search for the closest stars and brown dwarfs to the most luminous galaxies in the Universe. WISE science data products will serve as an important reference data set for planning observations and interpreting data obtained with future ground and space-borne observatories, such as JWST. WISE was launched on 2009-12-14 from Vandenberg SLC2W.
- ID:
- ivo://CDS.VizieR/J/ApJ/787/126
- Title:
- WISE reduced proper motions and spectral types
- Short Name:
- J/ApJ/787/126
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present an analysis of high proper motion objects that we have found in a recent study and in this work with multi-epoch astrometry from the Wide-field Infrared Survey Explorer (WISE). Using photometry and proper motions from the Two Micron All-Sky Survey and WISE, we have identified the members of this sample that are likely to be late-type, nearby, or metal-poor. We have performed optical and near-infrared spectroscopy on 41 objects, from which we measure spectral types that range from M4-T2.5. This sample includes 11 blue L dwarfs and 5 subdwarfs; the latter were also classified as such in the recent study by Kirkpatrick and coworkers. Based on their spectral types and photometry, several of our spectroscopic targets may have distances of <20 pc with the closest at ~12 pc. The tangential velocities implied by the spectrophotometric distances and proper motions indicate that four of the five subdwarfs are probably members of the Galactic halo while several other objects, including the early-T dwarf WISE J210529.08-623558.7, may belong to the thick disk.
- ID:
- ivo://CDS.VizieR/J/AJ/154/163
- Title:
- WISE-selected candidate SFRs beyond the Outer Arm
- Short Name:
- J/AJ/154/163
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The outer Galaxy beyond the Outer Arm provides a good opportunity to study star formation in an environment significantly different from that in the solar neighborhood. However, star-forming regions in the outer Galaxy have never been comprehensively studied or cataloged because of the difficulties in detecting them at such large distances. We studied 33 known young star-forming regions associated with 13 molecular clouds at R_G_>=13.5 kpc in the outer Galaxy with data from the Wide-field Infrared Survey Explorer (WISE) mid-infrared all-sky survey (Wright et al. 2010AJ....140.1868W; Jarrett et al. 2011ApJ...735..112J). From their color distribution, we developed a simple identification criterion of star-forming regions in the outer Galaxy with the WISE color. We applied the criterion to all the WISE sources in the molecular clouds in the outer Galaxy at R_G_>=13.5 kpc detected with the Five College Radio Astronomy Observatory (FCRAO) ^12^CO survey of the outer Galaxy (Heyer et al. 1998ApJS..115..241H), of which the survey region is 102.49{deg}=<l=<141.54{deg}, -3.03{deg}=<b=<5.41{deg}, and successfully identified 711 new candidate star-forming regions in 240 molecular clouds. The large number of samples enables us to perform the statistical study of star formation properties in the outer Galaxy for the first time. This study is crucial to investigate the fundamental star formation properties, including star formation rate, star formation efficiency, and initial mass function, in a primordial environment such as the early phase of the Galaxy formation.