- ID:
- ivo://CDS.VizieR/J/A+A/603/A10
- Title:
- ALMA view of G351.77-0.54
- Short Name:
- J/A+A/603/A10
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The fragmentation of high-mass gas clumps and the formation of the accompanying accretion disks lie at the heart of high-mass star formation research. We resolve the small-scale structure around the high-mass hot core G351.77-0.54 to investigate its disk and fragmentation properties. Using the Atacama Large Millimeter Array at 690GHz with baselines exceeding 1.5km, we study the dense gas, dust, and outflow emission at an unprecedented spatial resolution of 0.06" (130AU at 2.2kpc). Within the inner few 1000AU, G351.77 is fragmenting into at least four cores (brightness temperatures between 58 and 201K). The central structure around the main submm source #1 with a diameter of ~0.5" does not show additional fragmentation. While the CO(6-5) line wing emission shows an outflow lobe in the northwestern direction emanating from source #1, the dense gas tracer CH_3_CN shows a velocity gradient perpendicular to the outflow that is indicative of rotational motions. Absorption profile measurements against the submm source #2 indicate infall rates on the order of 10^-4^ to 10^-3^M_{sun}_/yr, which can be considered as an upper limit of the mean accretion rates. The position-velocity diagrams are consistent with a central rotating disk-like structure embedded in an infalling envelope, but they may also be influenced by the outflow. Using the CH_3_CN(37k-36k) k-ladder with excitation temperatures up to 1300K, we derive a gas temperature map for source #1 exhibiting temperatures often in excess of 1000K. Brightness temperatures of the submm continuum barely exceed 200K. This discrepancy between gas temperatures and submm dust brightness temperatures (in the optically thick limit) indicates that the dust may trace the disk mid-plane, whereas the gas could trace a hotter gaseous disk surface layer. We conduct a pixel-by-pixel Toomre gravitational stability analysis of the central rotating structure. The derived high Q values throughout the structure confirm that this central region appears stable against gravitational instability. Resolving for the first time a high-mass hot core at 0.06 resolution at submm wavelengths in the dense gas and dust emission allowed us to trace the fragmenting core and the gravitationally stable inner rotating disk-like structure. A temperature analysis reveals hot gas and comparably colder dust that may be attributed to different disk locations traced by dust emission and gas lines. The kinematics of the central structure #1 reveal contributions from a rotating disk, an infalling envelope, and potentially an outflow as well, whereas the spectral profile toward source #2 can be attributed to infall.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/857/19
- Title:
- ALMA view of GMCs in NGC 300
- Short Name:
- J/ApJ/857/19
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have conducted a ^12^CO(2-1) survey of several molecular gas complexes in the vicinity of HII regions within the spiral galaxy NGC300 using the Atacama Large Millimeter Array (ALMA). Our observations attain a resolution of 10pc and 1km/s, sufficient to fully resolve giant molecular clouds (GMCs) and the highest obtained to date beyond the Local Group. We use the CPROPS algorithm to identify and characterize 250 GMCs across the observed regions. GMCs in NGC300 appear qualitatively and quantitatively similar to those in the Milky Way disk: they show an identical scaling relationship between size R and linewidth {Delta}V ({Delta}V{propto}R^0.48+/-0.05^), appear to be mostly in virial equilibrium, and are consistent with having a constant surface density of about 60M_{sun}_/pc^2^. The GMC mass spectrum is similar to those in the inner disks of spiral galaxies (including the Milky Way). Our results suggest that global galactic properties such as total stellar mass, morphology, and average metallicity may not play a major role in setting GMC properties, at least within the disks of galaxies on the star-forming main sequence. Instead, GMC properties may be more strongly influenced by local environmental factors such as the midplane disk pressure. In particular, in the inner disk of NGC 300, we find this pressure to be similar to that in the local Milky Way but markedly lower than that in the disk of M51, where GMCs are characterized by systematically higher surface densities and a higher coefficient for the size-linewidth relation.
- ID:
- ivo://CDS.VizieR/J/A+A/659/A20
- Title:
- 2A0335+096 LOFAR images
- Short Name:
- J/A+A/659/A20
- Date:
- 04 Mar 2022 06:16:07
- Publisher:
- CDS
- Description:
- Radio observations represent a powerful probe of the physics occurring in the intracluster medium (ICM) because they trace the relativistic cosmic rays in the cluster magnetic fields, or within galaxies themselves. By probing the low-energy cosmic rays, low-frequency radio observations are especially interesting because they unveil emission powered by low-efficiency particle acceleration processes, which are believed to play a crucial role in the origin of diffuse radio emission. We investigate the origin of the radio mini-halo at the center of the galaxy cluster 2A0335+096 and its connection to the central galaxy and the sloshing cool core. We also study the properties of the head-tail galaxy GB6 B0335+096 hosted in the cluster to explore the lifecycle of the relativistic electrons in its radio tails. We use new LOw Frequency ARray (LOFAR) observations from the LOFAR Two-meter Sky Survey at 144MHz to map the low-frequency emission with a high level of detail. The new data were combined with archival Giant Metrewave Radio Telescope and Chandra observations to carry out a multi-wavelength study. We have made the first measurement of the spectral index of the mini-halo ({alpha}=-1.2+/-0.1 between 144MHz and 1.4GHz) and the lobes of the central source ({alpha}=~-1.5+/-0.1 between 144 and 610MHz). Based on the low-frequency radio emission morphology with respect to the thermal ICM, we propose that the origin of the diffuse radio emission is linked to the sloshing of the cool core. The new data revealed the presence of a Mpc-long radio tail associated with GB6 B0335+096. The observed projected length is a factor 3 longer than the expected cooling length, with evidence of flattening in the spectral index trend along the tail. Therefore, we suggest that the electrons toward the end of the tail are kept alive by the ICM gentle re-acceleration.
- ID:
- ivo://CDS.VizieR/J/A+A/658/A167
- Title:
- (Al2O3)n, n=1-10, clusters data
- Short Name:
- J/A+A/658/A167
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- Aluminium oxide (alumina; Al_2_O_3_) is a promising candidate as a primary dust condensate in the atmospheres of oxygen-rich evolved stars. Therefore, alumina 'seed' particles might trigger the onset of stellar dust formation and of stellar mass loss in the wind. However, the formation of alumina dust grains is not well understood. Aims. We aim to shed light on the initial steps of cosmic dust formation (i.e. nucleation) in oxygen-rich environments via a quantum- chemical bottom-up approach. Starting with an elemental gas-phase composition, we construct a detailed chemical-kinetic network that describes the formation and destruction of aluminium-bearing molecules and dust- forming (Al_2_O_3_)_n_ clusters up to the size of dimers (n=2) coagulating to tetramers (n=4). Intermediary species include the prevalent gas- phase molecules AlO and AlOH as well as Al_x_O_y_ clusters with x=1-5, y=1-6. The resulting extensive network is applied to two model stars, which represent a semi-regular variable and a Mira type, and to different circumstellar gas trajectories, including a non-pulsating outflow and a pulsating model. The growth of larger-sized (Al_2_O_3_)_n_ clusters with n=4-10 is described by the temperature-dependent Gibbs free energies of the most favourable structures (i.e. the global minima clusters) as derived from global optimisation techniques and calculated via density functional theory. We provide energies, bond characteristics, electrostatic properties, and vibrational spectra of the clusters as a function of size, n, and compare these to corundum, which corresponds to the crystalline bulk limit (n to infinity). The circumstellar aluminium gas-phase chemistry in oxygen- rich giants is primarily controlled by AlOH and AlO, which are tightly coupled by the reactions AlO+H_2_, AlO+H_2_O, and their reverse. Models of semi-regular variables show comparatively higher AlO abundances, as well as a later onset and a lower efficiency of alumina cluster formation when compared to Mira-like models. The Mira-like models exhibit an efficient cluster production that accounts for more than 90% of the available aluminium content, which is in agreement with the most recent ALMA observations. Chemical equilibrium calculations fail to predict both the alumina cluster formation and the abundance trends of AlO and AlOH in the asymptotic giant branch dust formation zone. Furthermore, we report the discovery of hitherto unreported global minimum candidates and low-energy isomers for cluster sizes n=7, 9, and 10. A homogeneous nucleation scenario, where Al2O3 monomers are successively added, is energetically viable. However, the formation of the Al2O3 monomer itself represents an energetic bottleneck. Therefore, we provide a bottom-up interpolation of the cluster characteristics towards the bulk limit by excluding the monomer, approximately following an n^(-1/3)^ dependence.
- ID:
- ivo://CDS.VizieR/J/A+A/580/A113
- Title:
- A low-luminosity type-1 QSO sample. III.
- Short Name:
- J/A+A/580/A113
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report on the optical spectroscopic analysis of a sample of 99 low-luminosity quasi-stellar objects (LLQSOs) at z<=0.06 base the Hamburg/ESO QSO Survey (HES). To better relate the low-redshift active galactic nucleus (AGN) to the QSO population it is important to study samples of the latter type at a level of detail similar to that of the low-redshift AGN. Powerful QSOs, however, are absent at low redshifts due to evolutionary effects and their small space density. Our understanding of the (distant) QSO population is, therefore, significantly limited by angular resolution and sensitivity. The LLQSOs presented here offer the possibility of studying the faint end of this population at smaller cosmological distances and, therefore, in greater detail. In comparing two spectroscopic methods, we aim to establish a reliable activity classification scheme of the LLQSOs sample. Our goal is to enrich our systematic multiwavelength analysis of the AGN/starburst relation in these systems and give a complementary information on this particular sample of LLQSOs from the Hamburg ESO survey. Here, we present results of the analysis of visible wavelength spectroscopy provided by the HES and the 6 Degree Field Galaxy Survey (6dFGS). These surveys use different spectroscopic techniques, long-slit and circular fiber, respectively. These allow us to assess the influence of different apertures on the activity of the LLQSOs using classical optical diagnostic diagrams. We perform a Gaussian fitting of strong optical emission lines and decompose narrow and broad Balmer components. A small number of our LLQSO present no broad component, which is likely to be present but buried in the noise. Two sources show double broad components, whereas six comply with the classic NLS1 requirements. As expected in NLR of broad line AGNs, the [SII]-based electron density values range between 100 and 1000N_e_/cm^3^. Using the optical characteristics of Populations A and B, we find that 50% of our sources with H{beta} broad emission are consistent with the radio-quiet sources definition. The remaining sources could be interpreted as low-luminosity radio-loud quasar. The BPT-based classification renders an AGN/Seyfert activity between 50 to 60%. For the remaining sources, the possible starburst contribution might control the LINER and HII classification. Finally, we discuss the aperture effect as responsible for the differences found between data sets, although variability in the BLR could play a significant role as well.
- ID:
- ivo://CDS.VizieR/J/A+A/615/A172
- Title:
- alpha Cen A and B chemical composition
- Short Name:
- J/A+A/615/A172
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The two solar-like stars alpha Cen A and B have long served as cornerstones for stellar physics in virtue of their immediate proximity, association in a visual binary, and masses that bracket the solar one. The recent detection of a terrestrial planet in the cool, suspected tertiary Proxima Cen now makes the system also of prime interest in the context of planetary studies. It is therefore of fundamental importance to tightly constrain the properties of the individual stellar components. We present a fully self-consistent, line-by-line differential abundance analysis of alpha Cen AB based on high-quality HARPS data. Various line lists are used and analysis strategies implemented to improve the reliability of the results. Abundances of 21 species with a typical precision of 0.02-0.03dex are reported. We find that the chemical composition of the two stars is not scaled solar (e.g., Na and Ni excess, depletion of neutron-capture elements), but that their patterns are strikingly similar, with a mean abundance difference (A-B) with respect to hydrogen of -0.01+/-0.04dex. Much of the scatter may be ascribed to physical effects that are not fully removed through a differential analysis because of the mismatch in parameters between the two components. We derive an age for the system from abundance indicators (e.g., [Y/Mg] and [Y/Al]) that is slightly larger than solar and in agreement with most asteroseismic results. Assuming coeval formation for the three components belonging to the system, this implies an age of about ~6Gyrs for the M dwarf hosting the terrestrial planet Proxima Cen b. After correction for Galactic chemical evolution effects, we find a trend between the abundance ratios and condensation temperature in alpha Cen A akin to that of the Sun. However, taking this finding as evidence for the sequestration of rocky material locked up in planets may be premature given that a clear link between the two phenomena remains to be established. The similarity between the abundance pattern of the binary components argues against the swallowing of a massive planet by one of the stars after the convective zones have shrunk to their present-day sizes.
- ID:
- ivo://CDS.VizieR/J/ApJ/711/619
- Title:
- {alpha}-element abundances in galactic PNe
- Short Name:
- J/ApJ/711/619
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In this paper, we present emission line strengths, abundances, and element ratios (X/O for Ne, S, Cl, and Ar) for a sample of 38 Galactic disk planetary nebulae (PNe) consisting primarily of Peimbert classification Type I. Spectrophotometry for these PNe incorporates an extended optical/near-IR range of 3600-9600{AA} including the [SIII] lines at 9069{AA} and 9532{AA}, setting this relatively large sample apart from typical spectral coverage. We have utilized Emission Line Spectrum Analyzer, a five-level atom abundance routine, to determine Te, Ne, ionization correction factors, and total element abundances, thereby continuing our work toward a uniformly processed set of data. With a compilation of data from >120 Milky Way PNe, we present results from our most recent analysis of abundance patterns in Galactic disk PNe. With a wide range of metallicities, galactocentric distances, and both Type I and non-Type I objects, we have examined the alpha elements against HII regions and blue compact galaxies (H2BCGs) to discern signatures of depletion or enhancement in PNe progenitor stars, particularly the destruction or production of O and Ne.
- ID:
- ivo://CDS.VizieR/J/A+A/580/A17
- Title:
- {alpha}-element abundances of Cepheid stars
- Short Name:
- J/A+A/580/A17
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present new homogeneous measurements of Na, Al, and three alpha-elements (Mg, Si, Ca) for 75 Galactic Cepheids, complemented with Cepheid abundances available in the literature, for a total of 439 stars. The abundances are based on high spectral resolution (R~38000) and high signal-to-noise ratio (S/N~50-300) spectra collected with UVES at ESO VLT. Special attention was given to providing a homogeneous abundance scale for these five elements plus iron. In addition, accurate Galactocentric distances (RG) based on near-infrared photometry are also available for all the Cepheids in the sample. We found that these five elements display well-defined linear radial gradients and modest standard deviations over the entire range of RG. The [element/Fe] abundance ratios are constant across the entire thin disk and over the entire period range; only the Ca radial distribution shows marginal evidence of slopes. These results indicate that the chemical enrichment history of iron and of the quoted elements has been quite similar across the four quadrants of the Galactic thin disk, and very homogenous within the range in age covered by the Cepheids (~10-300Myr). Finally, we also find that Cepheid abundances agree with similar abundances for thin and thick disk dwarf stars, and they follow the typical Mg-Al and Na-O correlations.
- ID:
- ivo://CDS.VizieR/J/ApJS/160/176
- Title:
- alpha-enhanced integrated Lick/IDS spectral indices
- Short Name:
- J/ApJS/160/176
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- All 25 Lick/IDS spectral indices have been computed for the integrated light of simple stellar populations over broad ranges of age and metallicity and with effects from horizontal-branch stars fully implemented. Our models employ {alpha}-enhanced isochrones at the sub-solar metallicity regime, but solar-scaled ones at solar and super-solar metallicity. We have also employed the updated response functions of Houdashelt et al. (2002AAS...201.1405H) at the solar and super-solar metallicity regime, so that we could assess the light-element enhancement phenomena seen from metal-rich early-type galaxies.
- ID:
- ivo://CDS.VizieR/J/ApJ/883/128
- Title:
- alpha & Fe abundances in the giant stellar stream
- Short Name:
- J/ApJ/883/128
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the first measurements of [Fe/H] and [{alpha}/Fe] abundances, obtained using spectral synthesis modeling, for red giant branch stars in M31's giant stellar stream (GSS). The spectroscopic observations, obtained at a projected distance of 17kpc from M31's center, yielded 61 stars with [Fe/H] measurements, including 21 stars with [{alpha}/Fe] measurements, from 112 targets identified as M31 stars. The [Fe/H] measurements confirm the expectation from photometric metallicity estimates that stars in this region of M31's halo are relatively metal rich compared to stars in the Milky Way's inner halo: more than half the stars in the field, including those not associated with kinematically identified substructure, have [Fe/H] abundances >-1.0. The stars in this field are {alpha}-enhanced at lower metallicities, while [{alpha}/Fe] decreases with increasing [Fe/H] above metallicities of [Fe/H]>~-0.9. Three kinematical components have been previously identified in this field: the GSS, a second kinematically cold feature of unknown origin, and M31's kinematically hot halo. We compare probabilistic [Fe/H] and [{alpha}/Fe] distribution functions for each of the components. The GSS and the second kinematically cold feature have very similar abundance distributions, while the halo component is more metal poor. Although the current sample sizes are small, a comparison of the abundances of stars in the GSS field with abundances of M31 halo and dSph stars from the literature indicate that the progenitor of the stream was likely more massive, and experienced a higher efficiency of star formation, than M31's existing dSphs or the dEs NGC147 and NGC185.