- ID:
- ivo://nasa.heasarc/exomaster
- Title:
- EXOSAT Master Observation List
- Short Name:
- EXOSAT
- Date:
- 09 May 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- The EXOMASTER database contains the EXOSAT observation log. This is a complete list of all EXOSAT observations, observing modes, and principal investigators. The log can be used to find out which targets were observed by EXOSAT, who observed them and the observation configuration. In addition this database can also be used to check the availability of the FOT (Final Observation Tape) files (the original raw data files) and their reformatted FITS files. This database table was originally created in September/October, 1997. The HEASARC revised this database table in August, 2006, in order to fix the equatorial coordinates (which were in the wrong equinox) and to rename or convert some of the time-related fields to better conform with current HEASARC practices. This is a service provided by NASA HEASARC .
Number of results to display per page
Search Results
- ID:
- ivo://nasa.heasarc/me
- Title:
- EXOSAT ME Spectra and Lightcurves
- Short Name:
- ME
- Date:
- 09 May 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- The EXOSAT Medium Energy experiment (ME) was an array of eight proportional counters with a total geometric area of 1600 cm<sup>2</sup>. The field of view was square and 0.75 degrees x 0.75 degrees FWHM on each side. Each proportional counter consisted of an argon chamber on top of a xenon chamber separated by a 1.5 mm beryllium window. The fractional energy resolution, dE/E, was 21(E/6 keV)<sup>-0.5</sup> percent FWHM for the argon chambers. The output from each chamber was pulse height analyzed into 128 channels with the argon chambers sensitive from 1-20 keV and the xenon from 5-50 keV. To optimize the background subtraction, each half of the detector array was alternately offset to a source-free region of sky to monitor the particle background. Only results from the argon detectors are included in the EXOSAT ME database. The high count rates given by the ME required OBC (on board computer) programs to compress the data prior to their being telemetered. Depending on the objective of the observation the OBC programs traded time resolution against spectral information. Depending on the telemetry load, and the OBC programs running for the other two experiments, two or three ME programs could be run simultaneously. The spectral orientated programs gave spectra plus intensity profiles. The timing programs gave purely intensity profile data with in some cases selectable channels. The highest time resolution possible for a single selectable energy band was 0.2 ms. The products available within this database has been created using the data sampled by the spectral orientated OBC programs. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/exolog
- Title:
- EXOSAT Observation Log
- Short Name:
- EXOLOG
- Date:
- 09 May 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- This database table contains the EXOSAT observation log. This is a complete list of all EXOSAT observations, observing modes, and principal investigators. The log can be used to find out which targets were observed by EXOSAT, who observed them, and the current state of the data analysis. The HEASARC revised this database table in August, 2005, in an effort to modernize its parameter names and add Galactic coordinates. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/tgs
- Title:
- EXOSAT TGS L and R Orders
- Short Name:
- TGS
- Date:
- 09 May 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- Spectra obtained using the EXOSAT transmission grating spectrometer, TGS. There are two databases TGS and TGS2 as follows: <pre> * TGS - the grating spectra averaged over the positive and negative orders * TGS2 - the postive and negative orders kept separate </pre> TGS provides a better overview of the spectrum, and is quicker to use with a spectral fitting program. This is the default that most users will want to use. Once a user has become more expert and wants to see, for example, if a subtle feature is present in both halves of the grating spectra, the user can access TGS2. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/tgs2
- Title:
- EXOSAT TGS Spectra and Lightcurves
- Short Name:
- TGS2
- Date:
- 09 May 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- Spectra obtained using the EXOSAT transmission grating spectrometer, TGS. There are two databases TGS and TGS2 as follows: <pre> * TGS - the grating spectra averaged over the positive and negative orders * TGS2 - the postive and negative orders kept separate </pre> TGS provides a better overview of the spectrum, and is quicker to use with a spectral fitting program. This is the default that most users will want to use. Once a user has become more expert and want to see, for example, if a subtle feature is present in both halves of the grating spectra, the user can access TGS2. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/fuselog
- Title:
- Far Ultraviolet Explorer (FUSE) Observation Log
- Short Name:
- FUSE
- Date:
- 09 May 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- NASA's FUSE (Far Ultraviolet Spectroscopic Explorer) spacecraft provided spectra in the far-ultraviolet portion of the electromagnetic spectrum (the wavelength range from 905 - 1180 Angstroms, or 90.5 - 118 nm), with a high spectral resolution of about 20000 (one wavelength point each 5 pm). FUSE was funded by NASA as part of its Origins program, and was developed in collaboration with the space agencies of Canada and France. It was operated for NASA by the Johns Hopkins University. FUSE was launched into orbit aboard a Delta II rocket on June 24, 1999 for a nominal mission of three years of operations. This table contains the FUSE Observation Log up to May 8, 2007, as archived at CDS in summer 2007. FUSE was formally decommissioned on October 18, 2007, following the failure of the last control wheel on the spacecraft in July 2007. More information about the FUSE Project can be found at NASA's Optical and Ultraviolet Archive (MAST) at <a href="http://archive.stsci.edu/">http://archive.stsci.edu/</a> and at the Johns Hopkins FUSE web site at <a href="http://fuse.pha.jhu.edu/">http://fuse.pha.jhu.edu/</a>. This database table was updated by the HEASARC in March 2009, superceding the previous versions of May 2007, May 2004, March 2005, and April 2006. It is primarily based on the CDS table <B/fuse>, specifically, the files fuse.dat, refs.dat and proposal.dat, but also contains additional information on proposal titles and bibliographic codes obtained from the MAST FUSE Archive. The HEASARC plans to update the bibliographic metadata for this table on a monthly basis as and when new information from the latter source becomes available. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/fermigdays
- Title:
- Fermi GBM Daily Data
- Short Name:
- FERMIGDAYS
- Date:
- 09 May 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- The Fermi GBM Daily Data database table contains entries for each day for which GBM data has been processed. The daily data products consist of GBM data that are produced continuously regardless of whether a burst occurred. Thus these products are the count rates from all detectors, the monitoring of the detector calibrations (e.g., the position of the 511 keV line), and the spacecraft position and orientation. Some days may also have event lists known as time-tagged event (TTE) files associated with them. These TTE files have the same format as those produced for bursts. Due to the large data volume associated with TTE files, only certain portions of the day considered of scientific interest to the instrument team will have TTE data. The underlying Level 0 data arrive continuously with each Ku band downlink. However, the GBM Instrument Operations Center (GIOC) will form FITS files of the resulting Level 1 data covering an entire calendar day (UTC); these daily files are then sent to the FSSC. Consequently, the data latency is about one day: the first bit from the beginning of a calendar day may arrive a few hours after the day began while the last bit will be processed and added to the data product file a few hours after the day ended. These data products may be sent to the FSSC file by file as they are produced, not necessarily in one package for a given day. Note that the data may include events from slightly before and slightly after the day official boundaries, which will be reflected in the start and stop times in the table. Consequently, some events may be listed in files for two consecutive days (e.g., at the end of one and the beginning of the next). Due to the continuous nature of GBM processing, new data files may arrive after the day has been included in Browse and reprocessed version may also arrive at any time. The reprocessed data will have the version number incremented (see file name conventions below). Browse will automatically download the latest versions of the data files. This database table was created by and is updated by the HEASARC based on information supplied by the Fermi Project. It is updated on a daily basis. The tte_flag parameter was added to the table in July 2010. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/fermilweek
- Title:
- Fermi LAT Weekly Data
- Short Name:
- FERMILWEEK
- Date:
- 09 May 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- The Fermi LAT Weekly Data database table provides access to LAT data binned into weekly files by the FSSC's data servers. For each week, the FSSC provides two FITS files: an all-sky file of photons containing positions, energies, etc. and a spacecraft pointing history file. The underscore separated fields in the file names indicate the file type (photon or spacecraft), the Fermi mission week (e.g., w009 = week 9), the processing version (which will change with each major reprocessing of LAT data), and a version number for the file itself. Note that currently the data may include events from slightly after the official week boundaries, which will be reflected in the start and stop times in the table. Any "run" of LAT data the FSSC receives that starts in a given week is put into the weekly file for that week and not broken up. Note additional selections must be applied to the weekly files prior to use in a data analysis. See <a href="http://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Cicerone/Cicerone_Data_Exploration/Data_preparation.html">LAT Data Selection Recommendations</a> and <a href="http://fermi.gsfc.nasa.gov/ssc/data/analysis/LAT_caveats.html">Caveats About Analyzing LAT Data</a> for more information. For queries based on position, energy, and exact times, use the <a href="http://fermi.gsfc.nasa.gov/cgi-bin/ssc/LAT/LATDataQuery.cgi">FSSC's LAT data server</a>. This database table is created by the HEASARC from FITS tables received from the Fermi Science Support Center (FSSC). It is updated on a weekly basis. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/galexlog
- Title:
- Galaxy Evolution Explorer (GALEX) Observation Log
- Short Name:
- GALEXLOG
- Date:
- 09 May 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- This table contains the Galaxy Evolution Explorer (GALEX) observation log of the extant and planned observations to be made by this satellite observatory. The Galaxy Evolution Explorer (GALEX) is a NASA Small Explorer Mission launched on April 28, 2003. GALEX has been performing the first Space Ultraviolet sky survey. Five imaging surveys in each of two bands (FUV: 1350-1750 Angstroms and NUV: 1750-2800 Angstroms) range from an all-sky survey (limiting m<sub>AB</sub> ~ 20 - 21) to an ultra-deep survey of 4 square degrees (limiting m<sub>AB</sub> ~ 26). Three spectroscopic grism surveys (spectral resolution R = 100 - 300) are underway with various depths (m<sub>AB</sub> ~ 20 - 25) and sky coverage (100 to 2 square degrees) over the 1350 - 2800 Angstroms spectral range. The instrument includes a 50-cm modified Ritchey-Chretien telescope, a dichroic beam splitter and astigmatism corrector, two large, sealed-tube microchannel plate detectors to simultaneously cover the two bands and the 1.2-degree field of view. A rotating wheel provides either imaging or grism spectroscopy with transmitting optics. The GALEX mission also includes an Associate Investigator program for additional observations and supporting data analysis which supports a wide variety of investigations made possible by the first UV sky survey. The HEASARC provides this table of GALEX observations as an assistance to the high-energy astrophysics community, e.g., to enable cross-correlations of GALEX with X-ray observations. The GALEX data are available via MAST at <a href="http://galex.stsci.edu/">http://galex.stsci.edu/</a>. More information about GALEX can be found at <a href="http://www.galex.caltech.edu/">http://www.galex.caltech.edu/</a> and <a href="https://asd.gsfc.nasa.gov/archive/galex/">https://asd.gsfc.nasa.gov/archive/galex/</a>. This table was first created in July 2010 using the input file <a href="http://sherpa.caltech.edu/gips/ref/galex_obs_status.csv">http://sherpa.caltech.edu/gips/ref/galex_obs_status.csv</a> obtained from the Caltech GALEX site. This table is updated within a week of the update of the original file. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/ipngrb
- Title:
- Gamma-Ray Bursts from the Interplanetary Network
- Short Name:
- GRB/IPN
- Date:
- 09 May 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- The Interplanetary Network (IPN) is a group of spacecraft equipped with gamma-ray burst detectors used to localize gamma-ray bursts (GRB) and soft gamma repeaters (SGRs, or magnetars). The astronomical locations of GRBs are determined by the comparison of the arrival times of the event at the locations of the detectors used on different space missions. The precision is proportional to the distance of spacecraft separations, so that the localizational accuracy of a network with baselines of thousands of light-seconds can be equal or superior to that of any other technique. The primary disadvantage of the IPN method, however, is the 1-day to 1.5-day delay in the acquisition of data from all the spacecraft in the network. Interplanetary GRB networks have been in existence since 1977, contributing to the studies of various astrophysical gamma-ray transients, most notably GRBs and SGRs (soft gamma repeaters). The IPN3 began operations in 1990, with the launch of the Ulysses spacecraft. It was joined by the Compton Gamma Ray Observatory in 1991. Pioneer Venus Orbiter, Mars Observer, and the Italian X-ray astronomy satellite BeppoSAX were part of the network while they were operating. Twenty-six experiments or missions have joined the network so far. Today, the main spacecrafts contributing their data are Konus-WIND, Mars Odyssey, INTEGRAL, RHESSI, Swift, Agile, BepiColombo, and Fermi. XMM-Newton and MAXI are kept to record the cosmic ray and SGR but not used for triangulation because of the different energy range. The IPNGRB database table is derived from a list provided by Kevin Hurley <khurley@ssl.berkeley.edu>, based on the IPN3. The initial list also includes particles and solar events as well as unconfirmed SGRs and GRBs. The IPNGRB database includes only the observations of confirmed cosmic gamma-ray bursts and SGR since the launch of the Ulysses spacecraft. It is updated every time a new list is provided to the HEASARC. This HEASARC catalog is derived from the master list of IPN3 events provided by Kevin Hurley. He also provided a FORTRAN program that generates the list of selected events. The output of this program is run at GSFC and ingested into the HEASARC database system. Information on the IPN3 system is available at <a href="http://ipn3.ssl.berkeley.edu/">http://ipn3.ssl.berkeley.edu/</a>. <p> Information on the IPN can be found at <a href="http://heasarc.gsfc.nasa.gov/docs/heasarc/missions/ipn.html">http://heasarc.gsfc.nasa.gov/docs/heasarc/missions/ipn.html</a>. <p> In December 2021 Kevin Hurley passed away. He was one of the initiator of the IPN and its evolution. The last table provided is dated August 2021. This is a service provided by NASA HEASARC .