- ID:
- ivo://CDS.VizieR/J/ApJ/782/41
- Title:
- 231 AGN candidates from the 2FGL catalog
- Short Name:
- J/ApJ/782/41
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The second Fermi-LAT source catalog (2FGL) is the deepest all-sky survey available in the gamma-ray band. It contains 1873 sources, of which 576 remain unassociated. Machine-learning algorithms can be trained on the gamma-ray properties of known active galactic nuclei (AGNs) to find objects with AGN-like properties in the unassociated sample. This analysis finds 231 high-confidence AGN candidates, with increased robustness provided by intersecting two complementary algorithms. A method to estimate the performance of the classification algorithm is also presented, that takes into account the differences between associated and unassociated gamma-ray sources. Follow-up observations targeting AGN candidates, or studies of multiwavelength archival data, will reduce the number of unassociated gamma-ray sources and contribute to a more complete characterization of the population of gamma-ray emitting AGNs.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/751/52
- Title:
- AGN candidates from the WISE, 2MASS, RASS (W2R)
- Short Name:
- J/ApJ/751/52
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have developed the "S_IX_" statistic to identify bright, highly likely active galactic nucleus (AGN) candidates solely on the basis of Wide-field Infrared Survey Explorer (WISE), Two Micron All-Sky Survey (2MASS), and ROSAT all-sky survey (RASS) data. This statistic was optimized with data from the preliminary WISE survey and the Sloan Digital Sky Survey, and tested with Lick 3m Kast spectroscopy. We find that sources with S_IX_<0 have a >~95% likelihood of being an AGN (defined in this paper as a Seyfert 1, quasar, or blazar). This statistic was then applied to the full WISE/2MASS/RASS dataset, including the final WISE data release, to yield the "W2R" sample of 4316 sources with S_IX_<0. Only 2209 of these sources are currently in the Veron-Cetty and Veron (VCV) catalog of spectroscopically confirmed AGNs, indicating that the W2R sample contains nearly 2000 new, relatively bright (J<~16) AGNs. We utilize the W2R sample to quantify biases and incompleteness in the VCV catalog. We find that it is highly complete for bright (J<14), northern AGNs, but the completeness drops below 50% for fainter, southern samples and for sources near the Galactic plane. This approach also led to the spectroscopic identification of 10 new AGNs in the Kepler field, more than doubling the number of AGNs being monitored by Kepler. The W2R sample contains better than 1 bright AGN every 10 deg^2^, permitting construction of AGN samples in any sufficiently large region of sky.
- ID:
- ivo://CDS.VizieR/J/ApJS/172/383
- Title:
- AGN candidates in the COSMOS field
- Short Name:
- J/ApJS/172/383
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present spectroscopic redshifts for the first 466 X-ray and radio-selected AGN targets in the 2deg^2^ COSMOS field. Spectra were obtained with the IMACS instrument on the Magellan (Baade) telescope, using the nod-and-shuffle technique. We identify a variety of type 1 and type 2 AGNs, as well as red galaxies with no emission lines. Our redshift yield is 72% down to i_AB_=24, although the yield is >90% for i_AB_<22. We expect the completeness to increase as the survey continues. When our survey is complete and additional redshifts from the zCOSMOS project are included, we anticipate ~1100 AGNs with redshifts over the entire COSMOS field. Our redshift survey is consistent with an obscured AGN population that peaks at z~0.7, although further work is necessary to disentangle the selection effects.
- ID:
- ivo://CDS.VizieR/J/A+A/651/A108
- Title:
- AGN catalog from the AKARI NEP Wide field
- Short Name:
- J/A+A/651/A108
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- The North Ecliptic Pole (NEP) field provides a unique set of panchromatic data, well suited for active galactic nuclei (AGN) studies. Selection of AGN candidates is often based on mid-infrared (MIR) measurements. Such method, despite its effectiveness, strongly reduces a catalog volume due to the MIR detection condition. Modern machine learning techniques can solve this problem by finding similar selection criteria using only optical and near-infrared (NIR) data. Aims of this work were to create a reliable AGN candidates catalog from the NEP field using a combination of optical SUBARU/HSC and NIR AKARI/IRC data and, consequently, to develop an efficient alternative for the MIR-based AKARI/IRC selection technique. A set of supervised machine learning algorithms was tested in order to perform an efficient AGN selection. Best of the models were formed into a majority voting scheme, which used the most popular classification result to produce the final AGN catalog. Additional analysis of catalog properties was performed in form of the spectral energy distribution (SED) fitting via the CIGALE software. The obtained catalog of 465 AGN candidates (out of 33119 objects) is characterized by 73% purity and 64% completeness. This new classification shows consistency with the MIR-based selection. Moreover, 76% of the obtained catalog can be found only with the new method due to the lack of MIR detection for most of the new AGN candidates. Training data, codes and final catalog are available via the github repository. Final AGN candidates catalog is also available via the CDS service.
- ID:
- ivo://CDS.VizieR/J/ApJ/613/682
- Title:
- AGN central masses and broad-line region sizes
- Short Name:
- J/ApJ/613/682
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present improved black hole masses for 35 active galactic nuclei (AGNs) based on a complete and consistent reanalysis of broad emission-line reverberation-mapping data. From objects with multiple line measurements, we find that the highest precision measure of the virial product c{tau}{Delta}V^2^/G, where {tau} is the emission-line lag relative to continuum variations and {Delta}V is the emission-line width, is obtained by using the cross-correlation function centroid (as opposed to the cross-correlation function peak) for the time delay and the line dispersion (as opposed to FWHM) for the line width and by measuring the line width in the variable part of the spectrum.
- ID:
- ivo://CDS.VizieR/J/MNRAS/499/4325
- Title:
- AGN contrib. of interac. galaxies
- Short Name:
- J/MNRAS/499/4325
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Emission from active galactic nuclei (AGNs) is known to play an important role in the evolution of many galaxies including luminous and ultraluminous systems (U/LIRGs), as well as merging systems. However, the extent, duration, and exact effects of its influence are still imperfectly understood, as are the conditions that lead to it dominating the IR emission, and then fading again after coalescence. To assess the impact of AGNs on interacting systems, we present a Spectral Energy Distribution (SED) analysis of a sample of 188 nearby galaxies We gather and systematically re-reduce archival broad-band imaging mosaics from the ultraviolet to the far-infrared using data from GALEX, SDSS, 2MASS, IRAS, WISE, Spitzer, and Herschel. We use spectroscopy from Spitzer/IRS to obtain fluxes from fine-structure lines that trace star formation and AGN activity. Utilizing the SED modelling and fitting tool CIGALE, we derive the physical conditions of the interstellar medium, both in star-forming regions and in nuclear regions dominated by the AGN in these galaxies. We investigate how the star formation rates (SFRs) and the fractional AGN contributions (fAGN) depend on stellar mass, galaxy type, and merger stage. We find that luminous galaxies more massive than about 10^10M* are likely to deviate significantly from the conventional galaxy main-sequence relation. Interestingly, infrared AGN luminosity and stellar mass in this set of objects are much tighter than SFR and stellar mass. We find that buried AGNs may occupy a locus between bright starbursts and pure AGNs in the fAGN-[NeV]/[NeII] plane. We identify a modest correlation between fAGN and mergers in their later stages.
- ID:
- ivo://CDS.VizieR/J/MNRAS/485/1822
- Title:
- AGN core shift measurements
- Short Name:
- J/MNRAS/485/1822
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The apparent position of jet base (core) in radio-loud active galactic nuclei changes with frequency because of synchrotron self-absorption. Studying this 'core shift' effect enables us to reconstruct properties of the jet regions close to the central engine. We report here results from core shift measurements in AGNs observed with global VLBI at 2 and 8GHz at epochs from 1994 to 2016. Our sample contains 40 objects observed at least 10 times during that period. The core shift is determined using a new automatic procedure introduced to minimize possible biases. The resulting multiple epoch measurements of the core position are employed for examining temporal variability of the core shift. We argue that the core shift variability is a common phenomenon, as established for 33 of 40 AGNs we study. Our analysis shows that the typical offsets between the core positions at 2 and 8GHz are about 0.5mas and they vary in time. Typical variability of the individual core positions is about 0.3mas. The measurements show a strong dependence between the core position and its flux density, suggesting that changes in both are likely related to the nuclear flares injecting denser plasma into the flow. We determine that density of emitting relativistic particles significantly increases during these flares, while relative magnetic field changes less and in the opposite direction.
- ID:
- ivo://CDS.VizieR/J/MNRAS/486/4290
- Title:
- AGN-driven winds through IR emission. II.
- Short Name:
- J/MNRAS/486/4290
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The global influence of AGN-driven outflows remains uncertain, due to a lack of large samples with accurately-determined outflow properties. In the second paper of this series, we determine the mass and energetics of ionized outflows is 234 type II AGN, the largest such sample to date, by combining the infrared emission of the dust in the wind (Paper I, Baron & Netzer, 2019MNRAS.482.3915B) with the emission line properties. We provide new general expressions for the properties of the outflowing gas, which depend on the ionization state of the gas. We also present a novel method to estimate the electron density in the outflow, based on optical line ratios and on the known location of the wind. The inferred electron densities, n_e_~10^4.5^cm^^-3^, are two orders of magnitude larger than typically assumed in most other cases of ionized outflows. We argue that the discrepancy is due to the fact that the commonly-used [SII]-based method underestimates the true density by a large factor. As a result, the inferred mass outflow rates and kinetic coupling efficiencies are dM/dt_out_~10^-2^(dM_{sun}_/yr) and epsilon=dE/dt_kin_/L_bol_~10^-5^ respectively, 1-2 orders of magnitude lower than previous estimates. Our analysis suggests the existence of a significant amount of neutral atomic gas at the back of the outflowing ionized gas clouds, with mass that is a factor of a few larger than the observed ionized gas mass. This has significant implications for the estimated mass and energetics of such flows.
- ID:
- ivo://CDS.VizieR/J/ApJS/143/257
- Title:
- AGN emission line properties
- Short Name:
- J/ApJS/143/257
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present measurements of the UV/optical emission line parameters in a sample of 158 active galactic nuclei observed with the Faint Object Spectrograph on the Hubble Space Telescope (HST), prior to the installation of COSTAR. We use an automated technique that accounts for galactic reddening, includes iron emission blends, galactic and intrinsic absorption lines, and performs multicomponent fits to the emission line profiles. We present measured line parameters (equivalent width and FWHM) for a large number (28) of different UV/optical lines, including upper limits for undetected lines.
30. AGN feedback
- ID:
- ivo://CDS.VizieR/J/MNRAS/471/28
- Title:
- AGN feedback
- Short Name:
- J/MNRAS/471/28
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Several studies support the existence of a link between the active galactic nucleus (AGN) and star formation activity. Radio jets have been argued to be an ideal mechanism for direct interaction between the AGN and the host galaxy. A drawback of previous surveys of AGN is that they are fundamentally limited by the degeneracy between redshift and luminosity in flux-density limited samples. To overcome this limitation, we present far-infrared Herschel observations of 74 radio-loud quasars (RLQs), 72 radio-quiet quasars (RQQs) and 27 radio galaxies (RGs), selected at 0.9<z<1.1, which span over two decades in optical luminosity. By decoupling luminosity from evolutionary effects, we investigate how the star formation rate (SFR) depends on AGN luminosity, radio-loudness and orientation. We find that (1) the SFR shows a weak correlation with the bolometric luminosity for all AGN sub-samples, (2) the RLQs show an SFR excess of about a factor of 1.4 compared to the RQQs, matched in terms of black hole mass and bolometric luminosity, suggesting that either positive radio-jet feedback or radio AGN triggering is linked to star formation triggering, and (3) RGs have lower SFRs by a factor of 2.5 than the RLQ sub-sample with the same BH mass and bolometric luminosity. We suggest that there is some jet power threshold at which radio-jet feedback switches from enhancing star formation (by compressing gas) to suppressing it (by ejecting gas). This threshold depends on both galaxy mass and jet power.