- ID:
- ivo://CDS.VizieR/J/AJ/162/174
- Title:
- HARPS radial velocity follow up of GJ 1214
- Short Name:
- J/AJ/162/174
- Date:
- 21 Mar 2022 00:16:00
- Publisher:
- CDS
- Description:
- We present an intensive effort to refine the mass and orbit of the enveloped terrestrial planet GJ1214b using 165 radial velocity (RV) measurements taken with the HARPS spectrograph over a period of 10years. We conduct a joint analysis of the RVs with archival Spitzer/IRAC transits and measure a planetary mass and radius of 8.17{+/-}0.43M{Earth} and 2.742-_0.053_^+0.050^R{Earth}. Assuming that GJ1214b is an Earth-like core surrounded by a H/He envelope, we measure an envelope mass fraction of X_env_=5.24_-0.29_^+0.30^%. GJ1214b remains a prime target for secondary eclipse observations of an enveloped terrestrial, the scheduling of which benefits from our constraint on the orbital eccentricity of <0.063 at 95% confidence, which narrows the secondary eclipse window to 2.8hr. By combining GJ1214 with other mid-M-dwarf transiting systems with intensive RV follow up, we calculate the frequency of mid-M-dwarf planetary systems with multiple small planets and find that 90_-21_^+5^% of mid-M dwarfs with a known planet with mass [1,10]M{Earth} and orbital period [0.5,50]days, will host at least one additional planet. We rule out additional planets around GJ1214 down to 3M{Earth} within 10days, such that GJ1214 is a single-planet system within these limits. This result has a 44_-5_^+9^ probability given the prevalence of multiplanet systems around mid-M dwarfs. We also investigate mid-M-dwarf RV systems and show that the probability that all reported RV planet candidates are real planets is <12% at 99% confidence, although this statistical argument is unable to identify the probable false positives.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/AJ/162/79
- Title:
- HARPS radial velocity follow up of TOI-1634
- Short Name:
- J/AJ/162/79
- Date:
- 11 Mar 2022
- Publisher:
- CDS
- Description:
- Studies of close-in planets orbiting M dwarfs have suggested that the M-dwarf radius valley may be well explained by distinct formation timescales between enveloped terrestrials and rocky planets that form at late times in a gas-depleted environment. This scenario is at odds with the picture that close-in rocky planets form with a primordial gaseous envelope that is subsequently stripped away by some thermally driven mass-loss process. These two physical scenarios make unique predictions of the rocky/enveloped transition's dependence on orbital separation such that studying the compositions of planets within the M-dwarf radius valley may be able to establish the dominant physics. Here, we present the discovery of one such keystone planet: the ultra-short-period planet TOI-1634b (P=0.989days, F=121F{Earth}, r_p_=1.790_-0.081_^+0.080^R{Earth}) orbiting a nearby M2 dwarf (K_s_=8.7, R_s_=0.450R{sun}, M_s_=0.502M{sun}) and whose size and orbital period sit within the M-dwarf radius valley. We confirm the TESS-discovered planet candidate using extensive ground-based follow-up campaigns, including a set of 32 precise radial velocity measurements from HARPS-N. We measure a planetary mass of 4.91_-0.70_^+0.68^M{Earth}, which makes TOI-1634b inconsistent with an Earth-like composition at 5.9{sigma} and thus requires either an extended gaseous envelope, a large volatile-rich layer, or a rocky composition that is not dominated by iron and silicates to explain its mass and radius. The discovery that the bulk composition of TOI-1634b is inconsistent with that of Earth supports the gas-depleted formation mechanism to explain the emergence of the radius valley around M dwarfs with M_s_<~0.5M{sun}.
- ID:
- ivo://CDS.VizieR/J/A+A/654/A104
- Title:
- HARPS XLVI. RV data for the 5 targets
- Short Name:
- J/A+A/654/A104
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- We present precise radial-velocity measurements of five solar-type stars observed with the HARPS Echelle spectrograph mounted on the 3.6-m telescope in La Silla (ESO, Chile). With a time span of more than 10 years and a fairly dense sampling, the survey is sensitive to low mass planets down to super-Earths on orbital periods up to 100 days. Our goal was to search for planetary companions around the stars HD39194, HD93385, HD96700, HD154088, and HD189567 and use Bayesian model comparison to make an informed choice on the number of planets present in the systems based on the radial velocity observations. These findings will contribute to the pool of known exoplanets and better constrain their orbital parameters. A first analysis was performed using the DACE (Data & Analysis Center for Exoplanets) online tools to assess the activity level of the star and the potential planetary content of each system. We then used Bayesian model comparison on all targets to get a robust estimate of the number of planets per star. We did this using the nested sampling algorithm PolyChord. For some targets, we also compared different noise models to disentangle planetary signatures from stellar activity. Lastly, we ran an efficient MCMC (Markov chain Monte Carlo) algorithm for each target to get reliable estimates for the planets' orbital parameters. We identify 12 planets within several multiplanet systems. These planets are all in the super-Earth and sub-Neptune mass regime with minimum masses ranging between 4 and 13 M_{Earth}_ and orbital periods between 5 and 103 days. Three of these planets are new, namely HD 93385 b, HD 96700 c, and HD 189567 c.
- ID:
- ivo://CDS.VizieR/J/A+A/624/A62
- Title:
- HAT-P-32b differential photometry time series
- Short Name:
- J/A+A/624/A62
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We obtained 11 photometric time series of secondary eclipse events of the hot Jupiter HAT-P-32b in the Sloan z' band. We inferred the eclipse depth and employed this value to derive an upper limit on the planetary geometric albedo.
- ID:
- ivo://CDS.VizieR/J/AJ/158/244
- Title:
- HAT-P-11b spectroscopic light curve fit results
- Short Name:
- J/AJ/158/244
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the first comprehensive look at the 0.35-5 {mu}m transmission spectrum of the warm (~800 K) Neptune HAT-P-11b derived from 13 individual transits observed using the Hubble and Spitzer Space Telescopes. Along with the previously published molecular absorption feature in the 1.1-1.7 {mu}m bandpass, we detect a distinct absorption feature at 1.15 {mu}m and a weak feature at 0.95 {mu}m, indicating the presence of water and/or methane with a combined significance of 4.4{sigma}. We find that this planet's nearly flat optical transmission spectrum and attenuated near-infrared molecular absorption features are best matched by models incorporating a high-altitude cloud layer. Atmospheric retrievals using the combined 0.35-1.7 {mu}m Hubble Space Telescope (HST) transmission spectrum yield strong constraints on atmospheric cloud-top pressure and metallicity, but we are unable to match the relatively shallow Spitzer transit depths without underpredicting the strength of the near-infrared molecular absorption bands. HAT-P-11b's HST transmission spectrum is well matched by predictions from our microphysical cloud models. Both forward models and retrievals indicate that HAT-P-11b most likely has a relatively low atmospheric metallicity (<4.6 Z_{sun}_ and <86 Z_{sun}_ at the 2{sigma} and 3{sigma} levels respectively), in contrast to the expected trend based on the solar system planets. Our work also demonstrates that the wide wavelength coverage provided by the addition of the HST STIS data is critical for making these inferences.
- ID:
- ivo://CDS.VizieR/J/A+A/631/A169
- Title:
- HAT-P-1b transit light curves
- Short Name:
- J/A+A/631/A169
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Time-series spectrophotometric studies of exoplanets during transit using ground-based facilities are a promising approach to characterize their atmospheric compositions. We aim to investigate the transit spectrum of the hot Jupiter HAT-P-1b. We compare our results to those obtained at similar wavelengths by previous space-based observations. We observed two transits of HAT-P-1b with the Gemini Multi-Object Spectrograph (GMOS) instrument on the Gemini North telescope using two instrument modes covering the 320-800nm and 520-950nm wavelength ranges. We used time-series spectrophotometry to construct transit light curves in individual wavelength bins and measure the transit depths in each bin. We accounted for systematic effects. We addressed potential photometric variability due to magnetic spots in the planet's host star with long-term photometric monitoring. We find that the resulting transit spectrum is consistent with previous Hubble Space Telescope (HST) observations. We compare our observations to transit spectroscopy models that marginally favor a clear atmosphere. However, the observations are also consistent with a flat spectrum, indicating high-altitude clouds. We do not detect the Na resonance absorption line (589nm), and our observations do not have sufficient precision to study the resonance line of K at 770nm. We show that even a single Gemini/GMOS transit can provide constraining power on the properties of the atmosphere of HAT-P-1b to a level comparable to that of HST transit studies in the optical when the observing conditions and target and reference star combination are suitable. Our 520-950nm observations reach a precision comparable to that of HST transit spectra in a similar wavelength range of the same hot Jupiter, HAT-P-1b. However, our GMOS transit between 320-800nm suffers from strong systematic effects and yields larger uncertainties.
- ID:
- ivo://CDS.VizieR/J/AJ/159/204
- Title:
- HAT-P-41b transmission spectra with HST WFC3/UVIS
- Short Name:
- J/AJ/159/204
- Date:
- 09 Dec 2021
- Publisher:
- CDS
- Description:
- The ultraviolet-visible wavelength range holds critical spectral diagnostics for the chemistry and physics at work in planetary atmospheres. To date, time-series studies of exoplanets to characterize their atmospheres have relied on several combinations of modes on the Hubble Space Telescope's STIS/COS instruments to access this wavelength regime. Here for the first time, we apply the Hubble WFC3/UVIS G280 grism mode to obtain exoplanet spectroscopy from 200 to 800nm in a single observation. We test the G280 grism mode on the hot Jupiter HAT-P-41b over two consecutive transits to determine its viability for the characterization of exoplanet atmospheres. We obtain a broadband transit depth precision of 29-33ppm and a precision of on average 200ppm in 10nm spectroscopic bins. Spectral information from the G280 grism can be extracted from both the positive and negative first-order spectra, resulting in a 60% increase in the measurable flux. Additionally, the first Hubble Space Telescope orbit can be fully utilized in the time-series analysis. We present detailed extraction and reduction methods for use by future investigations with this mode, testing multiple techniques. We find the results to be fully consistent with STIS measurements of HAT-P-41b from 310 to 800nm, with the G280 results representing a more observationally efficient and precise spectrum. HAT-P-41b's transmission spectrum is best fit with a model with Teq=2091K, high metallicity, and significant scattering and cloud opacity. With these first-of-their-kind observations, we demonstrate that WFC3/UVIS G280 is a powerful new tool to obtain UV-optical spectra of exoplanet atmospheres, adding to the UV legacy of Hubble and complementing future observations with the James Webb Space Telescope.
- ID:
- ivo://CDS.VizieR/J/A+A/628/A116
- Title:
- HAT-P-26 differential transit photometry
- Short Name:
- J/A+A/628/A116
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- From its discovery, the low density transiting Neptune HAT-P-26b showed a 2.1 sigma detection drift in its spectroscopic data, while photometric data showed a weak curvature in the timing residuals that required further follow-up observations to be confirmed. To investigate this suspected variability, we observed 11 primary transits of HAT-P-26b between March, 2015 and July, 2018. For this, we used the 2.15 meter Jorge Sahade Telescope placed in San Juan, Argentina, and the 1.2 meter STELLA and the 2.5 meter Nordic Optical Telescope, both located in the Canary Islands, Spain. To add upon valuable information on the transmission spectrum of HAT-P-26b, we focused our observations in the R-band only. To contrast the observed timing variability with possible stellar activity, we carried out a photometric follow-up of the host star along three years. We carried out a global fit to the data and determined the individual mid-transit times focusing specifically on the light curves that showed complete transit coverage. Using bibliographic data corresponding to both ground and space-based facilities, plus our new characterized mid-transit times derived from parts-per-thousand precise photometry, we observed indications of transit timing variations in the system, with an amplitude of 4 minutes and a periodicity of 270 epochs. The photometric and spectroscopic follow-up observations of this system will be continued in order to rule out any aliasing effects caused by poor sampling and the long-term periodicity.
- ID:
- ivo://CDS.VizieR/J/AcA/71/223
- Title:
- HAT-P-36 T80, T100 light curves and O-C
- Short Name:
- J/AcA/71/223
- Date:
- 10 Dec 2021 00:45:52
- Publisher:
- CDS
- Description:
- We study the most precise light curves of the planet-host HAT-P-36 that we obtained from the ground primarily with a brand-new 80cm telescope (T80) very recently installed at Ankara University Kreiken Observatory (AUKR) of Turkey and also from the space with Transiting Exoplanet Survey Satellite (TESS). The main objective of the study is to analyze the Transit Timing Variations (TTV) observed in the hot-Jupiter type planet HAT-P-36 b, a strong candidate for orbital decay, based on our own observations as well as that have been acquired by professional and amateur observers since its discovery (Bakos et al., 2012AJ....144...19B, Cat. J/AJ/144/19). HAT-P-36 displays out-of-transit variability as well as light curve anomalies during the transits of its planet due to stellar spots. We collected and detrended all the complete transit light curves we had access to from these anomalies, which we modeled with EXOFAST (Eastman et al., 2013PASP..125...83E) and measured the mid-transit times forming a homogeneous data set for a TTV analysis. We found an increase in the orbital period of HAT-P-36 b at a rate of 0.014 seconds per year from the best fitting quadratic function, which is only found in the TTV constructed by making use of the mid-transit times measured from detrended light curves, against an expectation of an orbital decay based on its parameters. We refined the values of these system parameters by modelling the Spectral Energy Distribution of the host star, its archival radial velocity observations from multiple instruments, and most precise transit light curves from the space and the ground covering a wide range of wavelengths with EXOFASTv2 (Eastman, 2017, ascl, 1710, 003). We also analyzed the out-of-transit variability from TESS observations to search for potential rotational modulations through a frequency analysis. We report a statistically significant periodicity in the TESS light curve at 4.22+/-0.02 days, which might have been caused by instrumental systematics but should be tracked in the future observations of the target.
- ID:
- ivo://CDS.VizieR/J/AJ/155/119
- Title:
- HATSouth-K2 C7 transiting/eclipsing systems
- Short Name:
- J/AJ/155/119
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report on the result of a campaign to monitor 25 HATSouth candidates using the Kepler space telescope during Campaign 7 of the K2 mission. We discover HATS-36b (EPIC 215969174b, K2-145b), an eccentric (e=0.105+/-0.028) hot Jupiter with a mass of 3.216+/-0.062 M_J_ and a radius of 1.235+/-0.043 R_J_, which transits a solar-type G0V star (V=14.386) in a 4.1752-day period. We also refine the properties of three previously discovered HATSouth transiting planets (HATS-9b, HATS-11b, and HATS-12b) and search the K2 data for TTVs and additional transiting planets in these systems. In addition, we also report on a further three systems that remain as Jupiter-radius transiting exoplanet candidates. These candidates do not have determined masses, however pass all of our other vetting observations. Finally, we report on the 18 candidates that we are now able to classify as eclipsing binary or blended eclipsing binary systems based on a combination of the HATSouth data, the K2 data, and follow-up ground-based photometry and spectroscopy. These range in periods from 0.7 day to 16.7 days, and down to 1.5 mmag in eclipse depths. Our results show the power of combining ground-based imaging and spectroscopy with higher precision space-based photometry, and serve as an illustration as to what will be possible when combining ground-based observations with TESS data.