- ID:
- ivo://CDS.VizieR/J/ApJ/880/49
- Title:
- Predictions of giant exoplanet host star's
- Short Name:
- J/ApJ/880/49
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The presence of certain elements within a star, and by extension its planet, strongly impacts the formation and evolution of the planetary system. The positive correlation between a host star's iron content and the presence of an orbiting giant exoplanet has been confirmed; however, the importance of other elements in predicting giant planet occurrence is less certain despite their central role in shaping internal planetary structure. We designed and applied a machine-learning algorithm to the Hypatia Catalog to analyze the stellar abundance patterns of known host stars to determine those elements important in identifying potential giant exoplanet host stars. We analyzed a variety of different elements ensembles-namely, volatiles, lithophiles, siderophiles, and Fe. We show that the relative abundances of oxygen, carbon, and sodium, in addition to iron, are influential indicators of the presence of a giant planet. We demonstrate the predictive power of our algorithm by analyzing stars with known giant planets and found that they had median 75% prediction score. We present a list of ~350 stars with no currently discovered planets that have a >=90% prediction probability likelihood of hosting a giant exoplanet. We investigated archival HARPS data and found significant trends that HIP 62345, HIP 71803, and HIP 10278 host long-period giant planet companions with estimated minimum M_p_sin(i) values of 3.7, 6.8, and 8.5M_J_, respectively. We anticipate that our findings will revolutionize future target selection, the role that elements play in giant planet formation, and the determination of giant planet interior structure models.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/AJ/156/28
- Title:
- Properties for exoplanets with Spitzer light curves
- Short Name:
- J/AJ/156/28
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a uniform assessment of existing near-infrared Spitzer Space Telescope observations of planet-bearing stars. Using a simple four-parameter blackbody thermal model, we analyze stars for which photometry in at least one of Spitzer's IRAC bands has been obtained over either the entirety or a significant fraction of the planetary orbit. Systems in this category comprise 10 well-studied systems with hot Jupiters on circular or near-circular orbits (HAT-P-7, HD 149026, HD 189733, HD 209458, WASP-12, WASP-14, WASP-18, WASP-19, WASP-33, and WASP-43), as well as three stars harboring planets on significantly eccentric orbits (GJ 436, HAT-P-2, and HD 80606). We find that our simple model, in almost all cases, accurately reproduces the minimum and maximum planetary emission, as well as the phase offsets of these extrema with respect to transits/secondary eclipses. For one notable exception, WASP-12 b, adding an additional parameter to account for its tidal distortion is not sufficient to reproduce its photometric features. Full-orbit photometry is available in multiple wavelengths for 10 planets. We find that the returned parameter values for independent fits to each band are largely in agreement. However, disagreements in nightside temperature suggest distinct atmospheric layers, each with their own characteristic minimum temperature. In addition, a diversity in albedos suggests variation in the opacity of the photospheres. While previous works have pointed out trends in photometric features based on system properties, we cannot conclusively identify analogous trends for physical model parameters. To make the connection between full-phase data and physical models more robust, a higher signal-to-noise ratio must come from both increased resolution and a careful treatment of instrumental systematics.
- ID:
- ivo://CDS.VizieR/J/other/Nat/586.528
- Title:
- Properties of exoplanet host stars
- Short Name:
- J/other/Nat/586.
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Planet formation is generally described in terms of a system containing the host star and a protoplanetary disk, of which the internal properties (for example, mass and metallicity) determine the properties of the resulting planetary system. However, (proto)planetary systems are predicted and observed to be affected by the spatially clustered stellar formation environment, through either dynamical star-star interactions or external photoevaporation by nearby massive stars. It is challenging to quantify how the architecture of planetary sysems is affected by these environmental processes, because stellar groups spatially disperse within less than a billion years, well below the ages of most known exoplanets. Here we identify old, co-moving stellar groups around exoplanet host stars in the astrometric data from the Gaia satellite and demonstrate that the architecture of planetary systems exhibits a strong dependence on local stellar clustering in position-velocity phase space. After controlling for host stellar age, mass, metallicity and distance from the star, we obtain highly significant differences (with p values of 10^-5^ to 10^-2^) in planetary system properties between phase space overdensities (composed of a greater number of co-moving stars than unstructured space) and the field. The median semi-major axis and orbital period of planets in phase space overdensities are 0.087 astronomical units and 9.6 days, respectively, compared to 0.81 astronomical units and 154 days, respectively, for planets around field stars. 'Hot Jupiters' (massive, short-period exoplanets) predominantly exist in stellar phase space overdensities, strongly suggesting that their extreme orbits originate from environmental perturbations rather than internal migration or planet-planet scattering. Our findings reveal that stellar clustering is a key factor setting the architectures of planetary systems.
- ID:
- ivo://CDS.VizieR/J/AJ/156/149
- Title:
- Properties of massive giant planets & brown dwarfs
- Short Name:
- J/AJ/156/149
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present thermodynamic material and transport properties for the extreme conditions prevalent in the interiors of massive giant planets and brown dwarfs. They are obtained from extensive ab initio simulations of hydrogen-helium mixtures along the isentropes of three representative objects. In particular, we determine the heat capacities, the thermal expansion coefficient, the isothermal compressibility, and the sound velocity. Important transport properties such as the electrical and thermal conductivity, opacity, and shear viscosity are also calculated. Further results for associated quantities, including magnetic and thermal diffusivity, kinematic shear viscosity, as well as the static Love number k_2_ and the equidistance, are presented. In comparison to Jupiter-mass planets, the behavior inside massive giant planets and brown dwarfs is stronger dominated by degenerate matter. We discuss the implications on possible dynamics and magnetic fields of those massive objects. The consistent data set compiled here may serve as a starting point to obtain material and transport properties for other substellar H-He objects with masses above one Jovian mass and finally may be used as input for dynamo simulations.
- ID:
- ivo://CDS.VizieR/J/AJ/156/213
- Title:
- Properties of N2K stars & new gas giant companions
- Short Name:
- J/AJ/156/213
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The N2K planet search program was designed to exploit the planet-metallicity correlation by searching for gas giant planets orbiting metal-rich stars. Here, we present the radial velocity measurements for 378 N2K target stars that were observed with the HIRES spectrograph at Keck Observatory between 2004 and 2017. With this data set, we announce the discovery of six new gas giant exoplanets: a double-planet system orbiting HD 148164 (Msini of 1.23 and 5.16 M_JUP_) and single planet detections around HD 55696 (Msini=3.87 M_JUP_), HD 98736 (Msini=2.33 M_JUP_), HD 203473 (Msini=7.8 M_JUP_), and HD 211810 (Msini=0.67 M_JUP_). These gas giant companions have orbital semimajor axes between 1.0 and 6.2 au and eccentricities ranging from 0.13 to 0.71. We also report evidence for three gravitationally bound companions with Msini between 20 and 30 M_JUP_, placing them in the mass range of brown dwarfs, around HD 148284, HD 214823, and HD 217850, and four low-mass stellar companions orbiting HD 3404, HD 24505, HD 98630, and HD 103459. In addition, we present updated orbital parameters for 42 previously announced planets. We also report a nondetection of the putative companion HD 73256 b. Finally, we highlight the most promising candidates for direct imaging and astrometric detection, and we find that many hot Jupiters from our sample could be detectable by state-of-the-art telescopes such as Gaia.
- ID:
- ivo://CDS.VizieR/J/AJ/154/228
- Title:
- Properties of transiting planet's host stars
- Short Name:
- J/AJ/154/228
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The properties of a transiting planet's host star are written in its transit light curve. The light curve can reveal the stellar density ({rho}_*_) and the limb-darkening profile in addition to the characteristics of the planet and its orbit. For planets with strong prior constraints on orbital eccentricity, we may measure these stellar properties directly from the light curve; this method promises to aid greatly in the characterization of transiting planet host stars targeted by the upcoming NASA Transiting Exoplanet Survey Satellite mission and any long-period, singly transiting planets discovered in the same systems. Using Bayesian inference, we fit a transit model, including a nonlinear limb-darkening law, to 66 Kepler transiting planet hosts to measure their stellar properties. We present posterior distributions of {rho}*, limb-darkening coefficients, and other system parameters for these stars. We measure densities to within 5% for the majority of our target stars, with the dominant precision-limiting factor being the signal-to-noise ratio of the transits. Of our measured stellar densities, 95% are in 3{sigma} or better agreement with previously published literature values. We make posterior distributions for all of our target Kepler objects of interest available online at 10.5281/zenodo.1028515.
- ID:
- ivo://CDS.VizieR/J/A+A/658/A115
- Title:
- Proxima Cen ESPRESSO RV and FWHM
- Short Name:
- J/A+A/658/A115
- Date:
- 21 Feb 2022 11:58:12
- Publisher:
- CDS
- Description:
- Proxima Centauri is the closest star to the Sun. This small, low-mass, mid M dwarf is known to host an Earth-mass exoplanet with an orbital period of 11.2 days within the habitable zone, as well as a long-period planet candidate with an orbital period of close to 5yr. We report on the analysis of a large set of observations taken with the ESPRESSO spectrograph at the aimed at a thorough evaluation of the presence of a third low-mass planetary companion, which started emerging during a previous campaign. Radial velocities (RVs) were calculated using both a cross-correlation function (CCF) and a template matching approach. The RV analysis includes a component to model Proxima`s activity using a Gaussian process (GP). We use the CCF's full width at half maximum to help constrain the GP, and we study other simultaneous observables as activity indicators in order to assess the nature of any potential RV signals. We detect a signal at 5.12+/-0.04 days with a semi-amplitude of 39+/-7cm/s. The analysis of subsets of the ESPRESSO data, the activity indicators, and chromatic RVs suggest that this signal is not caused by stellar variability but instead by a planetary companion with a minimum mass of 0.26+/-0.05M_{sun}_ (about twice the mass of Mars) orbiting at 0.029 au from the star. The orbital eccentricity is well constrained and compatible with a circular orbit.
- ID:
- ivo://CDS.VizieR/J/A+A/639/A77
- Title:
- Proxima Cen RV, FWHM and fluxes
- Short Name:
- J/A+A/639/A77
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The discovery of Proxima b marked one of the most important milestones in exoplanetary science in recent years. Yet the limited precision of the available radial velocity data and the difficulty in modelling the stellar activity calls for a confirmation of the Earth-mass planet. We aimed to confirm the presence of Proxima b using independent measurements obtained with the new ESPRESSO spectrograph, and refine the planetary parameters taking advantage of its improved precision. We analysed 63 spectroscopic ESPRESSO observations of Proxima (Gl 551) taken during 2019. We obtained radial velocity measurements with a typical radial velocity photon noise of 26cm/s. We combined these data with archival spectroscopic observations and newly obtained photometric measurements to model the stellar activity signals and disentangle them from planetary signals in the radial velocity (RV) data. We ran a joint Markov chain Monte Carlo analysis on the time series of the RV and full width half maximum of the cross-correlation function to model the planetary and stellar signals present in the data, applying Gaussian process regression to deal with the stellar activity signals. We confirm the presence of Proxima b independently in the ESPRESSO data and in the combined ESPRESSO+HARPS+UVES dataset. The ESPRESSO data on its own shows Proxima b at a period of 11.218+/-0.029-days, with a minimum mass of 1.29+/-0.13Me. In the combined dataset we measure a period of 11.18427+/-0.00070 days with a minimum mass of 1.173+/-0.086Me. We get a clear measurement of the stellar rotation period (87+/-12d) and its induced RV signal, but no evidence of stellar activity as a potential cause for the 11.2-days signal. We find some evidence for the presence of a second short-period signal, at 5.15-days with a semi-amplitude of only 40cm/s. If caused by a planetary companion, it would correspond to a minimum mass of 0.29+/-0.08Me. We find that for the case of Proxima, the full width half maximum of the cross-correlation function can be used as a proxy for the brightness changes and that its gradient with time can be used to successfully detrend the RV data from part of the influence of stellar activity. The activity-induced RV signal in the ESPRESSO data shows a trend in amplitude towards redder wavelengths. Velocities measured using the red end of the spectrograph are less affected by activity, suggesting that the stellar activity is spot dominated. This could be used to create differential RVs that are activity dominated and can be used to disentangle activity-induced and planetary-induced signals. The data collected excludes the presence of extra companions with masses above 0.6Me at periods shorter than 50-days.
- ID:
- ivo://CDS.VizieR/J/A+A/616/A147
- Title:
- Python Mie Doubling-Adding Programme
- Short Name:
- J/A+A/616/A147
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- PyMieDAP (the Python Mie Doubling-Adding Programme) is a Python-based tool for computing the total linearly and circularly polarized fluxes of incident unpolarized sunlight or starlight that is reflected by solar system planets or moons, respectively, or by exoplanets at a range of wavelengths. The radiative transfer computations are based on an doubling-adding Fortran algorithm and fully include polarization for all orders of scattering. The model (exo)planets are described by a model atmosphere composed of a stack of homogeneous layers containing gas and/or aerosol and/or cloud particles bounded below by an isotropically depolarizing surface (that is optionally black). The reflected light can be computed spatially resolved and/or disk-integrated. Spatially resolved signals are mostly representative for observations of solar system planets (or moons), while disk-integrated signals are mostly representative for exoplanet observations. PyMieDAP is modular and flexible, and allows users to adapt and optimize the code according to their needs. PyMieDAP keeps options open for connections with external programs and for future additions and extensions. In this paper, we describe the radiative transfer algorithm that PyMieDAP is based on and the principal functionalities of the code. We also provide benchmark results of PyMieDAP that can be used for testing its installation and for comparison with other codes. PyMieDAP is available online under the GNU GPL license at http://gitlab.com/loic.cg.rossi/pymiedap
- ID:
- ivo://CDS.VizieR/J/AJ/157/100
- Title:
- Radial velocities and bisector spans for K2-287
- Short Name:
- J/AJ/157/100
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report the discovery of K2-287b, a Saturn mass planet orbiting a G-dwarf with a period of P~15 days. First uncovered as a candidate using K2 campaign 15 data, follow-up photometry and spectroscopy were used to determine a mass M_P_=0.317+/-0.026 M_J_, radius R_P_=0.833+/-0.013 R_J_, period P=14.893291+/-0.000025 days, and eccentricity e=0.476+/-0.026. The host star is a metal-rich V=11.410+/-0.129 mag G-dwarf for which we estimate a mass M_*_=1.056_-0.021_^+0.022^ M_{sun}__, radius R_*_=1.070+/-0.010 R_{sun}_, metallicity [Fe/H]=0.20+/-0.05, and T_eff_=5673+/-75 K. This warm eccentric planet with a time-averaged equilibrium temperature of T_eq_~800 K adds to the small sample of giant planets orbiting nearby stars whose structure is not expected to be affected by stellar irradiation. Follow-up studies on the K2-287 system could help constrain theories of planet migration in close-in orbits.