- ID:
- ivo://CDS.VizieR/J/AJ/162/55
- Title:
- 65 Transit-timing variation planets properties
- Short Name:
- J/AJ/162/55
- Date:
- 16 Mar 2022 00:18:00
- Publisher:
- CDS
- Description:
- Transit surveys have revealed a significant population of compact multiplanet systems, containing several sub-Neptune-mass planets on close-in, tightly-packed orbits. These systems are thought to have formed through a final phase of giant impacts, which would tend to leave systems close to the edge of stability. Here, we assess this hypothesis, comparing observed eccentricities in systems exhibiting transit-timing variations versus the maximum eccentricities compatible with long-term stability. We use the machine-learning classifier SPOCK (Tamayo et al.) to rapidly classify the stability of numerous initial configurations and hence determine these stability limits. While previous studies have argued that multiplanet systems are often maximally packed, in the sense that they could not host any additional planets, we find that the existing planets in these systems have measured eccentricities below the limits allowed by stability by a factor of 2-10. We compare these results against predictions from the giant-impact theory of planet formation, derived from both N-body integrations and theoretical expectations that, in the absence of dissipation, the orbits of such planets should be distributed uniformly throughout the phase space volume allowed by stability. We find that the observed systems have systematically lower eccentricities than this scenario predicts, with a median eccentricity about four times lower than predicted. This suggests that, if these systems formed through giant impacts, then some dissipation must occur to damp their eccentricities. This may occur through interactions with the natal gas disk or a leftover population of planetesimals, or over longer timescales through the coupling of tidal and secular processes.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/655/A66
- Title:
- Transit Timing Variations bias in transit surveys
- Short Name:
- J/A+A/655/A66
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- Transit Timing Variations (TTVs) can provide useful information for systems observed by transit, by putting constraints on the masses and eccentricities of the observed planets, or even constrain the existence of non-transiting companions. However, TTVs can also act as a detection bias that can prevent the detection of small planets in transit surveys, that would otherwise be detected by standard algorithm such as the Boxed Least Square algorithm (BLS) if their orbit was not perturbed. This bias is especially present for surveys with long baseline, such as Kepler, some of the TESS sectors, and the upcoming PLATO mission. Here we introduce a detection method that is robust to large TTVs, and illustrate it by recovering and confirming a pair of resonant super-Earths with 10 hour TTVs around Kepler-1705 (prev. KOI-4772). The method is based on a neural network trained to recover the tracks of low-SNR perturbed planets in river diagrams. We then recover the transit parameters of these candidates by fitting the lightcurve. The individual transit signal-to-noise of Kepler-1705b and c are about three time smaller than all the previously-known planets with TTVs of 3 hours or more, pushing the boundary in the recovering of these small, dynamically active planets. Recovering this type of object is essential to have a complete picture of the observed planetary systems, solving for a bias not often taken into account in statistical studies of exoplanet populations. In addition, TTVs are a means of obtaining mass estimates which can be essential to studying the internal structure of planets discovered by transit surveys. Finally, we show that due to the strong orbital perturbations, it is possible that the spin of the outer resonant planet of Kepler-1705 is trapped in a sub or super-synchronous spin-orbit resonance. This would have important consequences on the climate of the planet since a non-synchronous spin implies that the flux of the star is spread over the whole planetary surface.
- ID:
- ivo://CDS.VizieR/J/AJ/161/202
- Title:
- Transit timing variations of Kepler-90g and h
- Short Name:
- J/AJ/161/202
- Date:
- 10 Dec 2021
- Publisher:
- CDS
- Description:
- Exoplanet transit-timing variations (TTVs) caused by gravitational forces between planets can be used to determine planetary masses and orbital parameters. Most of the observed TTVs are small and sinusoidal in time, leading to degeneracies between the masses and orbital parameters. Here we report a TTV analysis of Kepler-90g and Kepler-90h, which exhibit large TTVs up to 25hr. With optimization, we find a unique solution that allows us to constrain all of the orbital parameters. The best-fit masses for Kepler-90g and 90h are 15.0_-0.8_^+0.9^M{Earth} (Earth mass) and 203_-5_^+5^M_{Earth}, respectively, with Kepler-90g having an unusually low apparent density of 0.15{+/-}0.05g/cm^3^. The uniqueness of orbital parameter solution enables a long-term dynamical integration, which reveals that although their periods are close to 2:3 orbital resonance, they are not locked in resonance, and the configuration is stable over billions of years. The dynamical history of the system suggests that planet interactions are able to raise the eccentricities and break the resonant lock after the initial formation.
- ID:
- ivo://CDS.VizieR/J/AJ/159/239
- Title:
- Transmission Spectroscopy Metric of exoplanets
- Short Name:
- J/AJ/159/239
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Recent years have seen increasing interest in the characterization of sub-Neptune-sized planets because of their prevalence in the Galaxy, contrasted with their absence in our solar system. HD97658 is one of the brightest stars hosting a planet of this kind, and we present the transmission spectrum of this planet by combining four Hubble Space Telescope transits, 12 Spitzer/IRAC transits, and eight Microvariability and Oscillations of Stars Telescope (MOST) transits of this system. Our transmission spectrum has a higher signal-to-noise ratio than those from previous works, and the result suggests that the slight increase in transit depth from wavelength 1.1-1.7{mu}m reported in previous works on the transmission spectrum of this planet is likely systematic. Nonetheless, our atmospheric modeling results are inconclusive, as no model provides an excellent match to our data. Nonetheless, we find that atmospheres with high C/O ratios (C/O~>0.8) and metallicities of ~>100 solar metallicity are favored. We combine the mid-transit times from all of the new Spitzer and MOST observations and obtain an updated orbital period of P=9.489295{+/-}0.000005, with a best-fit transit time center at T0=2456361.80690{+/-}0.00038(BJD). No transit timing variations are found in this system. We also present new measurements of the stellar rotation period (34{+/-}2days) and stellar activity cycle (9.6yr) of the host star HD97658. Finally, we calculate and rank the Transmission Spectroscopy Metric of all confirmed planets cooler than 1000K and with sizes between 1R_{Earth}_ and 4R_{Earth}_. We find that at least a third of small planets cooler than 1000K can be well characterized using James Webb Space Telescope, and of those, HD97658b is ranked fifth, meaning that it remains a high-priority target for atmospheric characterization.
- ID:
- ivo://CDS.VizieR/J/A+A/658/A170
- Title:
- TRAPPIST-1 best-fit parameters
- Short Name:
- J/A+A/658/A170
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- We analyze solutions drawn from the recently published posterior distribution of the TRAPPIST-1 system, which consists of seven Earth-size planets appearing to be in a resonant chain around a red dwarf. We show that all the planets are simultaneously in 2-planet and 3-planet resonances, apart from the innermost pair for which the 2-planet resonant angles circulate. By means of a frequency analysis, we highlight that the transit-timing variation (TTV) signals possess a series of common periods varying from days to decades, which are also present in the variations of the dynamical variables of the system. Shorter periods (e.g., the TTVs characteristic timescale of 1.3yr) are associated with 2-planet mean-motion resonances, while longer periods arise from 3-planet resonances. By use of N-body simulations with migration forces, we explore the origin of the resonant chain of TRAPPIST-1 and find that for particular disc conditions, a chain of resonances -- similar to the observed one -- can be formed which accurately reproduces the observed TTVs. Our analysis suggests that while the 4-yr collected data of observations hold key information on the 2-planet resonant dynamics, further monitoring of TRAPPIST-1 will soon provide signatures of three-body resonances, in particular the 3.3 and 5.1yr periodicities expected for the current best-fit solution. Additional observations would help to assess whether the innermost pair of planets is indeed resonant (its proximity to the 8:5 resonance being challenging to explain), and therefore give additional constraints on formation scenarios.
- ID:
- ivo://CDS.VizieR/J/A+A/658/A133
- Title:
- TRAPPIST-1 h NIR spectrum
- Short Name:
- J/A+A/658/A133
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- The TRAPPIST-1 planetary system is favorable for transmission spectroscopy and offers the unique opportunity to study rocky-planets with possibly non-primary envelopes. We present here the transmission spectrum of the seventh planet of the TRAPPIST-1 system, TRAPPIST-1 h (R_P_=0.752R_{Earth}_, Teq=173K) using Hubble Space Telescope (HST), Wide Field Camera 3 Grism 141 (WFC3/G141) data. Our purpose is to reduce the HST observations of the seventh planet of TRAPPIST-1 system and by testing simple atmospheric hypothesis put new constraint on the composition and the nature of the planet. First we extracted and corrected the raw data to obtain a transmission spectrum in the Near-IR band (1.1-1.7um). TRAPPIST-1 is a cold M-dwarf and its activity could affect the transmission spectrum. We correct for stellar modulations using three different stellar contamination models, while some fit better the data, they are statistically not significant and the conclusion remains unchanged concerning the presence or not of an atmosphere. Finally, using a Bayesian atmospheric retrieval code we put new constraints on the atmosphere composition of TRAPPIST-1h. According to the retrieval analysis, there is no evidence of molecular absorption in the Near-InfraRed (NIR) spectrum. This suggests the presence of a high cloud deck or a layer of photochemical hazes in a primary atmosphere or a secondary atmosphere dominated by heavy species like nitrogen. This result could even be the consequence of the lack of an atmosphere as the spectrum is better fitted using a flat-line. Variations of transit depth around 1.3um are likely due to remaining scattering noise and results are not improved while changing the spectral resolution. TRAPPIST-1 h has probably lost its atmosphere or possesses a layer of clouds and hazes blocking the NIR signal. We can not distinguish yet between a primary cloudy or a secondary clear envelope using HST/WFC3 data but we can reject, in most cases with more than 3{sigma} confidence, the hypothesis of a clear atmosphere dominated by hydrogen and helium. By testing forced secondary atmospheric scenario, we find that a CO-rich atmosphere (i.e with a volume mixing ratio of 0.2) is one of the best fit to the spectrum with a Bayes Factor of 1.01 corresponding to a 2.1{sigma} detection.
- ID:
- ivo://CDS.VizieR/J/A+A/640/A112
- Title:
- TRAPPIST-1 transit timings
- Short Name:
- J/A+A/640/A112
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- With more than 1000 hours of observation from Feb 2016 to Oct 2019, the Spitzer Exploration Program Red Worlds (ID: 13067, 13175 and 14223) exclusively targeted TRAPPIST-1, a nearby (12pc) ultracool dwarf star, finding that it is orbited by seven transiting Earth-sized planets. At least three of these planets orbit within the classical habitable zone of the star, and all of them are well-suited for a detailed atmospheric characterization with the upcoming JWST. The main goals of the Spitzer Red Worlds program were (1) to explore the system for new transiting planets, (2) to intensively monitor the planets' transits to yield the strongest possible constraints on their masses, sizes, compositions, and dynamics, and (3) to assess the infrared variability of the host star. In this paper, we present the global results of the project. We analyzed 88 new transits and combined them with 100 previously analyzed transits, for a total of 188 transits observed at 3.6 or 4.5um. For a comprehensive study, we analyzed all light curves both individually and globally. We also analyzed 29 occultations (secondary eclipses) of planet b and eight occultations of planet c observed at 4.5um to constrain the brightness temperatures of their daysides. We identify several orphan transit-like structures in our Spitzer photometry, but all of them are of low significance. We do not confirm any new transiting planets. We do not detect any significant variation of the transit depths of the planets throughout the different campaigns. Comparing our individual and global analyses of the transits, we estimate for TRAPPIST-1 transit depth measurements mean noise floors of ~35 and 25ppm in channels 1 and 2 of Spitzer/IRAC, respectively. We estimate that most of this noise floor is of instrumental origins and due to the large inter-pixel inhomogeneity of IRAC InSb arrays, and that the much better interpixel homogeneity of JWST instruments should result in noise floors as low as 10ppm, which is low enough to enable the atmospheric characterization of the planets by transit transmission spectroscopy. Our analysis reveals a few outlier transits, but we cannot conclude whether or not they correspond to spot or faculae crossing events. We construct updated broadband transmission spectra for all seven planets which show consistent transit depths between the two Spitzer channels. Although we are limited by instrumental precision, the combined transmission spectrum of planet b to g tells us that their atmospheres seem unlikely to be CH_4_-dominated. We identify and model five distinct high energy flares in the whole dataset, and discuss our results in the context of habitability. Finally, we fail to detect occultation signals of planets b and c at 4.5um, and can only set 3{sigma} upper limits on their dayside brightness temperatures (611K for b 586K for c).
- ID:
- ivo://CDS.VizieR/J/A+A/656/A88
- Title:
- TrES-5 photometric timeseries
- Short Name:
- J/A+A/656/A88
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- The orbital motion of the transiting hot Jupiter TrES-5 b was reported to be perturbed by a planetary companion on a nearby orbit. Such compact systems do not frequently occur in nature, and learning their orbital architecture could shed some light on hot Jupiters' formation processes. We acquired fifteen new precise photometric time series for twelve transits of TrES-5 b between June 2019 and October 2020 using 0.9-2.0m telescopes. The method of precise transit timing was employed to verify the deviation of the planet from the Keplerian motion. Although our results show no detectable short-time variation in the orbital period of TrES-5 b and the existence of the additional nearby planet is not confirmed, the new transits were observed about two minutes earlier than expected. We conclude that the orbital period of the planet could vary in a long timescale. We found that the most likely explanation of the observations is the line-of-sight acceleration of the system's barycentre due to the orbital motion induced by a massive, wide-orbiting companion.
- ID:
- ivo://CDS.VizieR/J/AJ/161/24
- Title:
- TRICERATOPS predictions for 384 TOIs
- Short Name:
- J/AJ/161/24
- Date:
- 10 Dec 2021
- Publisher:
- CDS
- Description:
- We present TRICERATOPS, a new Bayesian tool that can be used to vet and validate TESS Objects of Interest (TOIs). We test the tool on 68 TOIs that have been previously confirmed as planets or rejected as astrophysical false positives. By looking in the false-positive probability (FPP)-nearby false-positive probability (NFPP) plane, we define criteria that TOIs must meet to be classified as validated planets (FPP<0.015 and NFPP<10^-3^), likely planets (FPP<0.5 and NFPP<10^-3^), and likely nearby false positives (NFPP>10^-1^). We apply this procedure on 384 unclassified TOIs and statistically validate 12, classify 125 as likely planets, and classify 52 as likely nearby false positives. Of the 12 statistically validated planets, 9 are newly validated. TRICERATOPS is currently the only TESS vetting and validation tool that models transits from nearby contaminant stars in addition to the target star. We therefore encourage use of this tool to prioritize follow-up observations that confirm bona fide planets and identify false positives originating from nearby stars.
- ID:
- ivo://CDS.VizieR/J/other/RAA/19.41
- Title:
- TTVs & linear ephemerides of Kepler exoplanets
- Short Name:
- J/other/RAA/19.4
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We determined new linear ephemerides of transiting exoplanets using long-cadence de-trended data from quarters Q1 to Q17 of Kepler mission. We analysed TTV diagrams of 2098 extrasolar planets. The TTVs of 121 objects were excluded (because of insufficient data-points, influence of stellar activity, etc). Finally, new linear ephemerides of 1977 exoplanets from Kepler archive are presented. The significant linear trend was observed on TTV diagrams of approximately 35% of studied exoplanets. Knowing correct linear ephemeris is principal for successful follow-up observations of transits. Residual TTV diagrams of 64 analysed exoplanets shows periodic variation, 43 of these TTV planets were not reported yet.