- ID:
- ivo://CDS.VizieR/J/AJ/140/1194
- Title:
- FUV/HI relations in nearby galaxies
- Short Name:
- J/AJ/140/1194
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We combine data from The HI Nearby Galaxy Survey and the GALEX Nearby Galaxy Survey to study the relationship between atomic hydrogen (HI) and far-ultraviolet (FUV) emission outside the optical radius (r25) in 17 spiral and 5 dwarf galaxies. In this regime, HI is likely to represent most of the interstellar medium (ISM) and FUV emission to trace recent star formation with little bias due to extinction, so that the two quantities closely trace the underlying relationship between gas and star formation rate (SFR).
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/504/113
- Title:
- F175W and F275W photometry of M31 and M32
- Short Name:
- J/ApJ/504/113
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present Faint Object Camera (FOC) ultraviolet images of the central 14"x14" of Messier 31 and Messier 32. The hot stellar populations detected in the composite UV spectra of these nearby galaxies are partially resolved into individual stars, and their individual colors and apparent magnitudes are measured. We detect 433 stars in M31 and 138 stars in M32, down to detection limits m_F275W_=25.5mag and m_F175W_=24.5mag.
- ID:
- ivo://CDS.VizieR/J/other/ApSS/365.89
- Title:
- Gaia Alerts with LAMOST and SDSS
- Short Name:
- J/other/ApSS/365
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The ESA-Gaia satellite is regularly producing Alerts on objects where photometric variability has been detected after several passages over the same region of the sky. The physical nature of these objects has often to be determined with the help of complementary observations from ground-based facilities. We have compared the list of Gaia Alerts (from the beginning in 2014 to Nov. 1st, 2018) with archival LAMOST and SDSS spectroscopic data. A search radius of 3" has been adopted. In using survey data, the date of the ground-based observation rarely corresponds to the date of the Alert, but this allows at least the identification of the source if it is persistent, or the host galaxy if the object was only transient like a supernova (SN). Some of the objects have several LAMOST observations, and we complemented this search by adding also SDSS DR15 data in order to look for long-term variability. A list of Gaia Nuclear Transients (GNT) from Kostrzewa-Rutkowska et al. (2018. 2018MNRAS.481..307K, Cat. J/MNRAS/481/307), has been included in this search also. We found 26 Gaia Alerts with spectra in LAMOST+SDSS labelled as stars, among which 12 have multi-epoch spectra. A majority of them are Cataclysmic Variables (CVs). Similarly, 206 Gaia Alerts have associated spectra labelled as galaxies, among which 49 have multi-epoch spectra. Those spectra were generally obtained on a date widely different from the Alert date, and are mostly emission-line galaxies with no particularity (except a few Seyferts), leading to the suspicion that most of the Alerts were due to a SN. As for the GNT list, we found 55 associated spectra labelled as galaxies, among them 13 with multi-epoch spectra. In these two galaxy samples, in only two cases, Gaia17aal and GNTJ170213+2543, was the date of the spectroscopic observation close enough to the Alert date: we find a trace of the SN itself in their LAMOST spectrum, both being now classified here as a type Ia SN. Compared to the galaxy sample from the Gaia alerts, the GNT sample has a higher proportion of AGNs, suggesting that some of the detected variations are also due to the AGN itself. Similarly for Quasars, we found only 30 Gaia Alerts but 68 GNT cases associated with single epoch quasar spectra in the databases. In addition to those, 12 plus 23 are quasars where multi-epoch spectra are available. For ten out of these 35, their multi-epoch spectra show appearance or disappearance of the broad Balmer lines and also variations in the continuum, qualifying them as "Changing Look Quasars" and therefore significantly increasing the available sample of such objects.
- ID:
- ivo://CDS.VizieR/J/ApJ/863/89
- Title:
- Gaia DR2 PMs of stars in ultra-faint MW satellites
- Short Name:
- J/ApJ/863/89
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The second data release from the Gaia mission (DR2) provides a comprehensive and unprecedented picture of the motions of astronomical sources in the plane of the sky, extending from the solar neighborhood to the outer reaches of the Milky Way. I present proper-motion measurements based on Gaia DR2 for 17 ultra-faint dwarf galaxies within 100kpc of the Milky Way. I compile the spectroscopically confirmed member stars in each dwarf bright enough for Gaia astrometry from the literature, producing member samples ranging from two stars in Triangulum II to 68 stars in Bootes I. From the spectroscopic member catalogs, I estimate the proper motion of each system. I find good agreement with the proper motions derived by the Gaia collaboration for Bootes I and Leo I. The tangential velocities for 14 of the 17 dwarfs are determined to better than 50km/s, more than doubling the sample of such measurements for Milky Way satellite galaxies. The orbital pericenters are well constrained, with a mean value of 38kpc. Only one satellite, Tucana III, is on an orbit passing within 15kpc of the Galactic center, suggesting that the remaining ultra-faint dwarfs are unlikely to have experienced severe tidal stripping. As a group, the ultra-faint dwarfs are on high-velocity, eccentric, retrograde trajectories, with nearly all of them having space motions exceeding 370km/s. A large majority of the objects are currently close to the pericenters of their orbits. In a low-mass (M_vir_=0.9x10^12^M_{sun}_) Milky Way potential, eight out of the 17 galaxies lack well-defined apocenters and appear likely to be on their first infall, indicating that the Milky Way mass may be larger than previously estimated or that many of the ultra-faint dwarfs are associated with the Magellanic Clouds. The median eccentricity of the ultra-faint dwarf orbits is 0.79, similar to the values seen in numerical simulations but distinct from the rounder orbits of the more luminous dwarf spheroidals.
- ID:
- ivo://CDS.VizieR/VII/285
- Title:
- Gaia DR2 quasar and galaxy classification
- Short Name:
- VII/285
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We provide probabilistic quasar and galaxy classifications for 2.7 million sources in Gaia Data Release 2. This has been achieved using a supervised classification method (Gaussian Mixture Models) based only on photometric and astrometric data (8 features) in Gaia-DR2. The model is trained empirically to classify objects into three classes - star, quasar, galaxy - for all objects with G>=14.5mag down to the Gaia magnitude limit of G=21.0mag. We provide the probabilities for being a quasar (pqso) and a galaxy (pgal); the probability of being a star is pstar = 1-(pqso+pgal), and all other Gaia data can be obtained by cross-matching Gaia-DR2 using the source identifier. As our main goal is to identify extragalactic objects, we only report objects with pqso+pgal>0.5. These probabilities incorporate a sensible class prior, namely that quasars are 500 times rarer than stars, and that galaxies 7500 times rarer than stars. See the paper for details of the purity and completeness of samples drawn from this catalogue, and for more details of its construction, contents, and validation.
- ID:
- ivo://CDS.VizieR/J/A+A/616/A12
- Title:
- Gaia DR2 sources in GC and dSph
- Short Name:
- J/A+A/616/A12
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The goal of this paper is to demonstrate the outstanding quality of the second data release of the Gaia mission and its power for constraining many different aspects of the dynamics of the satellites of the Milky Way. We focus here on determining the proper motions of 75 Galactic globular clusters, nine dwarf spheroidal galaxies, one ultra-faint system, and the Large and Small Magellanic Clouds. Using data extracted from the Gaia archive, we derived the proper motions and parallaxes for these systems, as well as their uncertainties. We demonstrate that the errors, statistical and systematic, are relatively well understood. We integrated the orbits of these objects in three different Galactic potentials, and characterised their properties. We present the derived proper motions, space velocities, and characteristic orbital parameters in various tables to facilitate their use by the astronomical community. Our limited and straightforward analyses have allowed us for example to (i) determine absolute and very precise proper motions for globular clusters; (ii) detect clear rotation signatures in the proper motions of at least five globular clusters; (iii) show that the satellites of the Milky Way are all on high-inclination orbits, but that they do not share a single plane of motion; (iv) derive a lower limit for the mass of the Milky Way of 9.8^+6.7^_-2.7_x10^11^M_{sun}_ based on the assumption that the Leo~I dwarf spheroidal is bound; (v) derive a rotation curve for the Large Magellanic Cloud based solely on proper motions that is competitive with line-of-sight velocity curves, now using many orders of magnitude more sources; and (vi) unveil the dynamical effect of the bar on the motions of stars in the Large Magellanic Cloud. All these results highlight the incredible power of the Gaia astrometric mission, and in particular of its second data release.
- ID:
- ivo://CDS.VizieR/J/A+A/603/A2
- Title:
- Gaia-ESO Survey abundances radial distribution
- Short Name:
- J/A+A/603/A2
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The spatial distribution of elemental abundances in the disc of our Galaxy gives insights both on its assembly process and subsequent evolution, and on the stellar nucleogenesis of the different elements. Gradients can be traced using several types of objects as, for instance, (young and old) stars, open clusters, HII regions, planetary nebulae. We aim to trace the radial distributions of abundances of elements produced through different nucleosynthetic channels - the {alpha}-elements O, Mg, Si, Ca and Ti, and the iron-peak elements Fe, Cr, Ni and Sc - by use of the Gaia-ESO IDR4 results for open clusters and young-field stars. From the UVES spectra of member stars, we have determined the average composition of clusters with ages >0.1Gyr. We derived statistical ages and distances of field stars. We traced the abundance gradients using the cluster and field populations and compared them with a chemo-dynamical Galactic evolutionary model. The adopted chemo-dynamical model, with the new generation of metallicity-dependent stellar yields for massive stars, is able to reproduce the observed spatial distributions of abundance ratios, in particular the abundance ratios of [O/Fe] and [Mg/Fe] in the inner disc (5kpc<R_GC_<7kpc), with their differences, that were usually poorly explained by chemical evolution models. Oxygen and magnesium are often considered to be equivalent in tracing {alpha}-element abundances and in deducing, for example, the formation timescales of different Galactic stellar populations. In addition, often [{alpha}/Fe] is computed combining several {alpha}-elements. Our results indicate, as expected, a complex and diverse nucleosynthesis of the various {alpha}-elements, in particular in the high metallicity regimes, pointing towards a different origin of these elements and highlighting the risk of considering them as a single class with common features.
- ID:
- ivo://CDS.VizieR/J/A+A/620/A155
- Title:
- Gaia proper motions of 7 UFD galaxies
- Short Name:
- J/A+A/620/A155
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present mean absolute proper motion measurements for seven ultra- faint dwarf galaxies orbiting the Milky Way, namely Bootes III, Carina II, Grus II, Reticulum II, Sagittarius II, Segue 2 and Tucana IV. For four of these dwarfs our proper motion estimate is the first ever provided. The adopted astrometric data come from the second data release of the Gaia mission. We determine the mean proper motion for each galaxy starting from an initial guess of likely members, based either on radial velocity measurements or using stars on the Horizontal Branch identified in the Gaia (G_BP_-G_RP_, G) colour-magnitude diagram in the field of view towards the UFD. We then refine their membership iteratively using both astrometry and photometry. We take into account the full covariance matrix among the astrometric parameters when deriving the mean proper motions for these systems. Our procedure provides mean proper motions with typical uncertainties of ~0.1mas/yr, even for galaxies without prior spectroscopic information. In the case of Segue 2 we find that using radial velocity members only leads to biased results, presumably because of the small number of stars with measured radial velocities. Conclusions: our procedure allows to maximize the number of member stars per galaxy regardless of the existence of prior spectroscopic information, and can therefore be applied on any faint or distant stellar system within reach of Gaia.
- ID:
- ivo://CDS.VizieR/VI/137
- Title:
- GaiaSimu Universe Model Snapshot
- Short Name:
- VI/137
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Context: This study has been developed in the framework of the computational simulations that are executed for the preparation of the ESA Gaia astrometric mission. Aims: We focus on describing the objects and characteristics that Gaia will potentially observe without taking into consideration instrumental effects (detection efficiency, observing errors). Methods: The theoretical Universe Model prepared for the Gaia simulation has been statistically analysed at a given time. Ingredients of the model are described, with the greatest emphasis on the stellar content, the double and multiple stars, and variability. Results: In this simulation the errors have not yet been included. Hence we estimated the number of objects and their theoretical photometric, astrometric and spectroscopic characteristics if they are perfectly detected.We show that Gaia will be able to potentially observe 1.1 billion of stars (single or part of multiple star systems) of which about 2% are variable stars and 3% have one or two exoplanets. At the extragalactic level, observations will be potentially composed of several millions of galaxies, half a million to 1 million quasars and about 50,000 supernovae that will occur during the five years of the mission.
- ID:
- ivo://CDS.VizieR/J/ApJ/899/140
- Title:
- 632 Gaia Ultracompact Dwarf galaxy candidates
- Short Name:
- J/ApJ/899/140
- Date:
- 14 Mar 2022 00:54:57
- Publisher:
- CDS
- Description:
- Tidally stripped galaxy nuclei and luminous globular clusters (GCs) are important tracers of the halos and assembly histories of nearby galaxies, but are difficult to reliably identify with typical ground-based imaging data. In this paper we present a new method to find these massive star clusters using Gaia DR2, focusing on the massive elliptical galaxy Centaurus A (Cen A). We show that stripped nuclei and GCs are partially resolved by Gaia at the distance of Cen A, showing characteristic astrometric and photometric signatures. We use this selection method to produce a list of 632 new candidate luminous clusters in the halo of Cen A out to a projected radius of 150kpc. Adding in broadband photometry and visual examination improves the accuracy of our classification. In a spectroscopic pilot program we have confirmed five new luminous clusters, which includes the 7th and 10th most luminous GC in Cen A. Three of the newly discovered GCs are further away from Cen A than all previously known GCs. Several of these are compelling candidates for stripped nuclei. We show that our novel Gaia selection method retains at least partial utility out to distances of ~25Mpc and hence is a powerful tool for finding and studying star clusters in the sparse outskirts of galaxies in the local universe.