- ID:
- ivo://CDS.VizieR/J/AJ/126/2644
- Title:
- CL 0024+1654 UBVI photometry
- Short Name:
- J/AJ/126/2644
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Wide-field (20x20arcmin^2^) UBVI images of intermediate-redshift (z=0.39), Butcher-Oemler cluster CL0024+1654 are being distributed. These data probe the rest-frame mid-UV properties over a much larger area than previous studies of CL0024+1654. These images were obtained with the 0.9m telescope at the NOAO Kitt Peak National Observatory in 1991-1992. The resolution is 0.68 arcsec/pix, and the field-of-view is 20arcmin^2^. The standard KPNO Harris filter set was used. We are distributing the individual U, B, V and I frames, as well as the combined U+B+V+I image. Using these data, SExtractor was used to construct a multi-color catalog of approximately 6000 objects in this field. We present both isophotal and aperture photometry in the catalog to be complete. We cross-matched the objects in our catalog with three other CL0024 datasets, and list the matching results in the distributed catalog. Our catalog includes the cross-references to data from Czoske et al., 2001, Cat. <J/A+A/372/391>; from Smail et al., 1997, Cat. <J/ApJS/110/213>; and from Dressler et al., 1999, Cat. <J/ApJS/122/51>.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/597/A122
- Title:
- Cluster and field elliptical galaxies at z~1.3
- Short Name:
- J/A+A/597/A122
- Date:
- 04 Feb 2022 00:04:27
- Publisher:
- CDS
- Description:
- The aim of this work is twofold: first, to assess whether the population of elliptical galaxies in cluster at z~1.3 differs from the population in the field and whether their intrinsic structure depends on the environment where they belong; second, to constrain their properties 9Gyr back in time through the study of their scaling relations. We compared a sample of 56 cluster elliptical galaxies selected from three clusters at 1.2<z<1.4 with elliptical galaxies selected at comparable redshift in the GOODS-South field (~30), in the COSMOS area (~180), and in the CANDELS fields (~220). To single out the environmental effects, we selected cluster and field elliptical galaxies according to their morphology. We compared physical and structural parameters of galaxies in the two environments and we derived the relationships between effective radius, surface brightness, stellar mass, and stellar mass density {Sigma}_R_e__ within the effective radius and central mass density {Sigma}_1kpc_, within 1kpc radius. We find that the structure and the properties of cluster elliptical galaxies do not differ from those in the field: they are characterized by the same structural parameters at fixed mass and they follow the same scaling relations. On the other hand, the population of field elliptical galaxies at z~1.3 shows a significant lack of massive (M_*_>2x10^11^M_{sun}_) and large (R_e_>4-5kpc) elliptical galaxies with respect to the cluster. Nonetheless, at M_*_<2x10^11^M_{sun}_, the two populations are similar. The size-mass relation of cluster and field ellipticals at z~1.3 clearly defines two different regimes, above and below a transition mass m_t_~=2-3x10^10^M_{sun}_ at lower masses the relation is nearly flat (R_e_{prop}M*^-0.1+/-0.2^), the mean radius is nearly constant at ~1kpc and, consequently, {Sigma}_Re_~={Sigma}_1kpc_ while, at larger masses, the relation is R_e_{prop}M*^0.64+/-0.09^. The transition mass marks the mass at which galaxies reach the maximum stellar mass density. Also the {Sigma}_1kpc_-mass relation follows two different regimes, above and below the transition mass ({Sigma}_1kpc_{prop}M*_1.07<mt_^0.64>mt^) defining a transition mass density {Sigma}_1kpc_~=2-3x10^3^M_{sun}_/pc^2^. The effective stellar mass density {Sigma}_Re_ does not correlate with mass; dense/compact galaxies can be assembled over a wide mass regime, independently of the environment. The central stellar mass density, {Sigma}_1kpc_, besides being correlated with the mass, is correlated to the age of the stellar population: the higher the central stellar mass density, the higher the mass, the older the age of the stellar population. While we found some evidence of environmental effects on the elliptical galaxies as a population, we did not find differences between the intrinsic properties of cluster and field elliptical galaxies at comparable redshift. The structure and the shaping of elliptical galaxies at z~1.3 do not depend on the environment. However, a dense environment seems to be more efficient in assembling high-mass large ellipticals, much rarer in the field at this redshift. The correlation found between the central stellar mass density and the age of the galaxies beside the mass shows the close connection of the central regions to the main phases of mass growth.
- ID:
- ivo://CDS.VizieR/J/AJ/126/2152
- Title:
- Cluster And Infall Region Nearby Survey. I
- Short Name:
- J/AJ/126/2152
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The CAIRNS (Cluster and Infall Region Nearby Survey) project is a spectroscopic survey of the infall regions surrounding eight nearby, rich, X-ray-luminous clusters of galaxies. We have collected 15654 redshifts (3471 new or remeasured) within ~5-10h^-1^Mpc of the centers of the clusters, making it the largest study of the infall regions of clusters. We determine cluster membership and the mass profiles of the clusters based on the phase-space distribution of the galaxies. All of the clusters display decreasing velocity dispersion profiles. The mass profiles are fitted well by functional forms based on numerical simulations but exclude an isothermal sphere. Specifically, Navarro et al. (1997ApJ...490..493N) and Hernquist (1990ApJ...356..359H) models provide good descriptions of cluster mass profiles to their turnaround radii. Our sample shows that the predicted infall pattern is ubiquitous in rich, X-ray-luminous clusters over a large mass range. The caustic mass estimates are in excellent agreement with independent X-ray estimates at small radii and with virial estimates at intermediate radii. The mean ratio of the caustic mass to the X-ray mass is 1.03+/-0.11, and the mean ratio of the caustic mass to the virial mass (when corrected for the surface pressure term) is 0.93+/-0.07. We further demonstrate that the caustic technique provides reasonable mass estimates even in merging clusters.
- ID:
- ivo://CDS.VizieR/J/AJ/128/1078
- Title:
- Cluster and Infall Region Nearby Survey. II
- Short Name:
- J/AJ/128/1078
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- CAIRNS (Cluster and Infall Region Nearby Survey) is a spectroscopic survey of the infall regions surrounding nine nearby rich clusters of galaxies. In our previous paper (Cat. <J/AJ/126/2152>), we used redshifts within ~10h_-1_ Mpc of the centers of the clusters to determine the mass profiles of the clusters based on the phase-space distribution of the galaxies. Here, we use Two Micron All Sky Survey (Cat. <II/246>) photometry and an additional 515 redshifts to investigate the environmental dependence of near-infrared mass-to-light ratios.
- ID:
- ivo://CDS.VizieR/J/A+A/614/A82
- Title:
- Cluster candidates for joint X-rays and SZ surveys
- Short Name:
- J/A+A/614/A82
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The combination of X-ray and Sunyaev-Zeldovich (SZ) observations can potentially improve the cluster detection efficiency, when compared to using only one of these probes, since both probe the same medium, the hot ionized gas of the intra-cluster medium. We present a method based on matched multifrequency filters (MMF) for detecting galaxy clusters from SZ and X-ray surveys. This method builds on a previously proposed joint X-ray-SZ extraction method and allows the blind detection of clusters, that is finding new clusters without knowing their position, size, or redshift, by searching on SZ and X-ray maps simultaneously. The proposed method is tested using data from the ROSAT all-sky survey and from the Planck survey. The evaluation is done by comparison with existing cluster catalogues in the area of the sky covered by the deep SPT survey. Thanks to the addition of the X-ray information, the joint detection method is able to achieve simultaneously better purity, better detection efficiency, and better position accuracy than its predecessor Planck MMF, which is based on SZ maps alone. For a purity of 85%, the X-ray-SZ method detects 141 confirmed clusters in the SPT region; to detect the same number of confirmed clusters with Planck MMF, we would need to decrease its purity to 70%. We provide a catalogue of 225 sources selected by the proposed method in the SPT footprint, with masses ranging between 0.7 and 14.5x10^14^M_{sun}_ and redshifts between 0.01 and 1.2.
- ID:
- ivo://CDS.VizieR/J/MNRAS/351/265
- Title:
- Cluster galaxy circular velocity function
- Short Name:
- J/MNRAS/351/265
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present galaxy circular velocity functions (GCVFs) for 34 low-redshift (z<~0.15) clusters identified in the Sloan Digital Sky Survey (SDSS, Cat. <J/AJ/123/567>), for 15 clusters drawn from dark matter simulations of hierarchical structure growth in a {LAMBDA}CDM cosmology, and for ~22000 SDSS field galaxies. We find that the simulations successfully reproduce the shape, amplitude and scatter in the observed distribution of cluster galaxy circular velocities. The power-law slope of the observed cluster GCVF is ~-2.4, independent of cluster velocity dispersion. The average slope of the simulated GCVFs is somewhat steeper, although formally consistent given the errors. We find that the effects of baryons on galaxy rotation curves is to flatten the simulated cluster GCVF into better agreement with observations. The cumulative GCVFs of the simulated clusters are very similar across a wide range of cluster masses, provided individual subhalo circular velocities are scaled by the circular velocities of the parent cluster. The scatter is consistent with that measured in the cumulative, scaled observed cluster GCVF. Finally, the observed field GCVF deviates significantly from a power law, being flatter than the cluster GCVF at circular velocities less than 200km/s.
- ID:
- ivo://CDS.VizieR/J/A+A/637/A31
- Title:
- Cluster in superclusters of galaxies
- Short Name:
- J/A+A/637/A31
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The characterization of the internal structure of the superclusters of galaxies (walls, filaments and knots where the clusters are located) is paramount for understanding the formation of the Large Scale Structure and for outlining the environment where galaxies evolved in the last Gyr. (i) To detect the compact regions of high relative density (clusters and rich groups of galaxies); (ii) to map the elongated structures of low relative density (filaments, bridges and tendrils of galaxies); (iii) to characterize the galaxy populations on filaments and study the environmental effects they are subject to. We employed optical galaxies with spectroscopic redshifts from the SDSS-DR13 inside rectangular boxes encompassing the volumes of a sample of 46 superclusters of galaxies, up to z=0.15. A virial approximation was applied to correct the positions of the galaxies in the redshift space for the "finger of God" projection effect. Our methodology implements different classical pattern recognition and machine learning techniques (Voronoi tessellation, hierarchical clustering, graph-network theory, minimum spanning trees, among others), pipelined in the Galaxy Systems-Finding algorithm and the Galaxy Filaments-Finding algorithm. We detected in total 2705 galaxy systems (clusters and groups, of which 159 are new) and 144 galaxy filaments in the 46 superclusters of galaxies. The filaments we detected have a density contrast above 3, with a mean value around 10, a radius of about 2.5h_70_^-1^Mpc and lengths between 9 and 130h_70_^-1^Mpc. Correlations between the galaxy properties (mass, morphology and activity) and the environment in which they reside (systems, filaments and the dispersed component) suggest that galaxies closer to the skeleton of the filaments are more massive by up to 25% compared to those in the dispersed component; 70% of the galaxies in the filament region present early type morphologies and the fractions of active galaxies (both AGN and SF) seem to decrease as galaxies approach the filament. Our results support thee idea that galaxies in filaments are subject to environmental effects leading them to be more massive (probably due to larger rates of both merging and gas accretion), less active both in star formation and nuclear activity, and prone to the density-morphology relation. These results suggest that preprocessing in large scale filaments could have significant effects on galaxy evolution.
- ID:
- ivo://CDS.VizieR/J/AN/327/365
- Title:
- Clusters and groups of galaxies in 2dF
- Short Name:
- J/AN/327/365
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We create a new catalogue of groups and clusters, applying the friends-to-friends method to the 2dF GRS final release. We investigate various selection effects due to the use of a magnitude limited sample. For this purpose we follow the changes in group sizes and mean galaxy number densities within the groups when shifting nearby observed groups to larger distances. We study the distribution of sizes of dark matter haloes in N-body simulations and compare properties of these haloes and the 2dF groups.
- ID:
- ivo://CDS.VizieR/J/MNRAS/259/233
- Title:
- Cluster SC2008-57(A3667)
- Short Name:
- J/MNRAS/259/233
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- (Abstract of the paper) We present the results of photometric and spectroscopic observations of the cluster of galaxies SC2008-57 (A3667). The observations have resulted in a catalogue with positions and magnitudes for 203 galaxies, complete at b_25 = 18.0, and radial velocities for 128 galaxies, 91 per cent complete at b_25 = 17.5. The cluster can be classified as type L because its galaxy distribution is highly flattened. It shows two strong concentrations: a main concentration, centred on the cluster brightest galaxy (a D galaxy) and coincident with the peak of X-ray emission, and a substructure around the second brightest galaxy (also a D galaxy). Most of the galaxies in this substructure seem to be bound to the second-brightest galaxy, forming a dynamical subunit inside the cluster. The extreme flattening of the cluster may at least partially be due to the presence of the substructure. The cluster also shows evidence for luminosity segregation, with the brightest galaxies being preferentially found in high galaxy density regions. Most of the luminosity segregation, however, is produced by galaxies associated with the two clumps around the D galaxies, suggesting that dynamical friction is effective in subclusters with low velocity dispersions and may be associated with the formation of D galaxies. The velocity dispersion of SC2008-57 is high, about 1200 km/s, but consistent with the observed X-ray luminosity. The cluster mass, derived using several estimators, is about 2.6 x 10^15 M_solar. Both the cluster mass and velocity dispersion may be overestimates due to the presence of the substructure.
- ID:
- ivo://CDS.VizieR/J/A+A/616/A42
- Title:
- Clusters candidates from PSZ1 catalogue
- Short Name:
- J/A+A/616/A42
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have identified new clusters and characterized previously unknown Planck Sunyaev-Zeldovich (SZ) sources from the first Planck catalogue of SZ sources (PSZ1). The results presented here correspond to an optical follow-up observational programme developed during approximately one year (2014) at Roque de los Muchachos Observatory, using the 2.5m Isaac Newton telescope, the 3.5m Telescopio Nazionale Galileo, the 4.2m William Herschel telescope and the 10.4m Gran Telescopio Canarias. We have characterized 115 new PSZ1 sources using deep optical imaging and spectroscopy. We adopted robust criteria in order to consolidate the SZ counterparts by analysing the optical richness, the 2D galaxy distribution, and velocity dispersions of clusters. Confirmed counterparts are considered to be validated if they are rich structures, well aligned with the Planck PSZ1 coordinate and show relatively high velocity dispersion. Following this classification, we confirm 53 clusters, which means that 46% of this PSZ1 subsample has been validated and characterized with this technique. Sixty-two SZ sources (54% of this PSZ1 subset) remain unconfirmed. In addition, we find that the fraction of unconfirmed clusters close to the galactic plane (at |b|<25{deg}) is greater than that at higher galactic latitudes (|b|>25{deg}), which indicates contamination produced by radio emission of galactic dust and gas clouds on these SZ detections. In fact, in the majority of the cases, we detect important galactic cirrus in the optical images, mainly in the SZ target located at low galactic latitudes, which supports this hypothesis.