Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/MNRAS/449/2345
- Title:
- Mass and luminosity of maxBCG galaxies groups
- Short Name:
- J/MNRAS/449/2345
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report the results of a multiwaveband analysis of the masses and luminosities of ~600 galaxy groups and clusters identified in the maxBCG catalogue. These data are intended to form the basis of future work on the formation of the m_12_ gap in galaxy groups and clusters. We use SDSS spectroscopy and g-, r- and i-band photometry to estimate galaxy group/cluster virial radii, masses and total luminosities. In order to establish the robustness of our results, we compare them with literature studies that utilize a variety of mass determinations techniques (dynamical, X-ray and weak lensing) and total luminosities estimated in the B, r, i and K wavebands. We also compare our results to predictions derived from the Millennium Simulation. We find that, once selection effects are properly accounted for, excellent agreement exists between our results and the literature with the exception of a single observational study. We also find that the Millennium Simulation does an excellent job of predicting the effects of our selection criteria. Our results show that, over the mass range ~ 10^13^-10^15^M_{sun}_, variations in the slope of the mass-luminosity scaling relation with mass detected in this and many other literature studies is in part the result of selection effects. We show that this can have serious ramifications on attempts to determine how the mass-to-light ratio of galaxy groups and cluster varies with mass.
- ID:
- ivo://CDS.VizieR/J/MNRAS/435/1265
- Title:
- Masses of galaxy clusters
- Short Name:
- J/MNRAS/435/1265
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The application to observational data of the generalized scaling relations (gSRs) presented in Ettori et al. (2012MNRAS.420.2058E) is here discussed. We extend further the formalism of the gSR in the self-similar model for X-ray galaxy clusters, showing that for a generic relation M_tot_{prop.to}L^{alpha}^M_g_^{beta}^T^{gamma}^, where L, M_g_ and T are the gas luminosity, mass and temperature, respectively, the values of the slopes lay in the plane 4{alpha}+3{beta}+2{gamma}=3. Using published data set, we show that some projections of the gSR are the most efficient relations, holding among observed physical quantities in the X-ray band, to recover the cluster gravitating mass.
- ID:
- ivo://CDS.VizieR/J/AJ/149/171
- Title:
- 2MASS galaxy group catalog
- Short Name:
- J/AJ/149/171
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- A galaxy group catalog is built from the sample of the 2MASS Redshift Survey almost complete to K_s_=11.75 over 91% of the sky. Constraints in the construction of the groups were provided by scaling relations determined by close examination of well defined groups with masses between 10^11^ and 10^15^M_{sun}_. Group masses inferred from K_s_ luminosities are statistically in agreement with masses calculated from application of the virial theorem. While groups have been identified over the full redshift range of the sample, the properties of the nearest and farthest groups are uncertain and subsequent analysis has only considered groups with velocities between 3000 and 10000km/s. The 24044 galaxies in this range are identified with 13607 entities, 3461 of them with two or more members. A group mass function is constructed. The Sheth-Tormen formalism provides a good fit to the shape of the mass function for group masses above 6h^-1^x10^12^M_{sun}_ but the count normalization is poor. Summing all the mass associated with the galaxy groups between 3000 and 10000km/s gives a density of collapsed matter as a fraction of the critical density of {Omega}_collapsed_=0.16.
- ID:
- ivo://CDS.VizieR/J/MNRAS/404/325
- Title:
- Massive galaxy clusters lensing analyse
- Short Name:
- J/MNRAS/404/325
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a statistical analysis of a sample of 20 strong lensing clusters drawn from the Local Cluster Substructure Survey, based on high-resolution Hubble Space Telescope imaging of the cluster cores and follow-up spectroscopic observations using the Keck-I telescope.
- ID:
- ivo://CDS.VizieR/J/A+A/646/A83
- Title:
- 12 massive lensing clusters MUSE observations
- Short Name:
- J/A+A/646/A83
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Spectroscopic surveys of massive galaxy clusters reveal the properties of faint background galaxies thanks to the magnification provided by strong gravitational lensing. We present a systematic analysis of integral-field- spectroscopy observations of 12 massive clusters, conducted with the Multi Unit Spectroscopic Explorer (MUSE). All data were taken under very good seeing conditions (~0.6") in effective exposure times between two and 15 hrs per pointing, for a total of 125 hrs. Our observations cover a total solid angle of ~23-arcmin^2^ in the direction of clusters, many of which were previously studied by the MAssive Clusters Survey (MACS), Frontier Fields (FFs), Grism Lens-Amplified Survey from Space (GLASS) and Cluster Lensing And Supernova survey with Hubble (CLASH) programmes. The achieved emission line detection limit at 5sigma for a point source varies between (0.77-1.5)x10^-18^erg/s/cm^2^ at 7000{AA}. We present our developed strategy to reduce these observational data, detect continuum sources and line emitters in the datacubes, and determine their redshifts. We constructed robust mass models for each cluster to further confirm our redshift measurements using strong-lensing constraints, and identified a total of 312 strongly lensed sources producing 939 multiple images. The final redshift catalogues contain more than 3300 robust redshifts, of which 40% are for cluster members and ~30% are for lensed Lyman-alpha emitters. Fourteen percent of all sources are line emitters that are not seen in the available HST images, even at the depth of the FFs (~29 AB). We find that the magnification distribution of the lensed sources in the high- magnification regime (mu=2-25) follows the theoretical expectation of N(z){prop.to}mu^-2^. The quality of this dataset, number of lensed sources, and number of strong-lensing constraints enables detailed studies of the physical properties of both the lensing cluster and the background galaxies. The full data products from this work, including the datacubes, catalogues, extracted spectra, ancillary images, and mass models, are made available to the community.
- ID:
- ivo://CDS.VizieR/J/MNRAS/441/203
- Title:
- Massive quiescent ETG in clusters
- Short Name:
- J/MNRAS/441/203
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We analyse the mass-size relation of ~400 quiescent massive ETGs (M*/M_{sun}_>3x10^10^) hosted by massive clusters (M200~2-7x10^14^M_{sun}_) at 0.8<z<1.5, compared to those found in the field at the same epoch. Size is parametrized using the mass-normalized B-band rest-frame size, {gamma}=R_e_/M_11_^0.57^. We find that the {gamma} distributions in both environments peak at the same position, but the distributions in clusters are more skewed towards larger sizes. This tail induces average sizes ~ 30-40 percent larger for cluster galaxies than for field galaxies of similar stellar mass, while the median sizes are statistically the same with a difference of ~10+/-10%. Since this size difference is not observed in the local Universe, the evolution of average galaxy size at fixed stellar mass from z~1.5 for cluster galaxies is less steep at more than 3{sigma}({prop.to}(1+z)-0.53+/-0.04) than the evolution of field galaxies ({prop.to}(1+z)-0.92+/-0.04). The difference in evolution is not measured when the median values of {gamma} are considered: {prop.to}(1+z)-0.84+/-0.04 in the field versus {prop.to}(1+z)-0.71+/-0.05 in clusters. In our sample, the tail of large galaxies is dominated by galaxies with 3x10^10^<M*/M_{sun}_<10^11^. At this low-mass end, the difference in the average size is better explained by the accretion of new galaxies that are quenched more efficiently in clusters and/or by different morphological mixing in the cluster and field environments. If part of the size evolution would be due to mergers, the difference that we see between cluster and field galaxies could be caused by higher merger rates in clusters at higher redshift, when galaxy velocities are lower.
- ID:
- ivo://CDS.VizieR/J/ApJ/772/25
- Title:
- Massive SZE clusters observations with ACT
- Short Name:
- J/ApJ/772/25
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the first dynamical mass estimates and scaling relations for a sample of Sunyaev-Zel'dovich effect (SZE) selected galaxy clusters. The sample consists of 16 massive clusters detected with the Atacama Cosmology Telescope (ACT) over a 455deg^2^ area of the southern sky. Deep multi-object spectroscopic observations were taken to secure intermediate-resolution (R~700-800) spectra and redshifts for {approx}60 member galaxies on average per cluster. The dynamical masses M_200c_ of the clusters have been calculated using simulation-based scaling relations between velocity dispersion and mass. The sample has a median redshift z=0.50 and a median mass M_200c_~12x10^14^h_70_^-1^M_{sun}_ with a lower limit M_200c_~6x10^14^h_70_^-1^M_{sun}_, consistent with the expectations for the ACT southern sky survey. These masses are compared to the ACT SZE properties of the sample, specifically, the match-filtered central SZE amplitude {overline}{y_0_}, the central Compton parameter y_0_, and the integrated Compton signal Y_200c_, which we use to derive SZE-mass scaling relations. All SZE estimators correlate with dynamical mass with low intrinsic scatter (<~20%), in agreement with numerical simulations. We explore the effects of various systematic effects on these scaling relations, including the correlation between observables and the influence of dynamically disturbed clusters. Using the three-dimensional information available, we divide the sample into relaxed and disturbed clusters and find that ~50% of the clusters are disturbed. There are hints that disturbed systems might bias the scaling relations, but given the current sample sizes, these differences are not significant; further studies including more clusters are required to assess the impact of these clusters on the scaling relations.
- ID:
- ivo://CDS.VizieR/J/ApJ/867/12
- Title:
- Mass-richness relations for X-ray and SZE clusters
- Short Name:
- J/ApJ/867/12
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We study the mass-richness relation of 116 spectroscopically confirmed massive clusters at 0.4<z<2 by mining the Spitzer archive. We homogeneously measure the richness at 4.5um for our cluster sample within a fixed aperture of 2' radius and above a fixed brightness threshold, making appropriate corrections for both background galaxies and foreground stars. We have two subsamples, those which have (a) literature X-ray luminosities and (b) literature Sunyaev-Zel'dovich effect masses. For the X-ray subsample we re-derive masses adopting the most recent calibrations. We then calibrate an empirical mass-richness relation for the combined sample spanning more than one decade in cluster mass and find the associated uncertainties in mass at fixed richness to be +/-0.25dex. We study the dependence of the scatter of this relation with galaxy concentration, defined as the ratio between richness measured within an aperture radius of 1' and 2'. We find that at fixed aperture radius the scatter increases for clusters with higher concentrations. We study the dependence of our richness estimates with depth of the 4.5um imaging data and find that reaching a depth of at least [4.5]=21(AB)mag is sufficient to derive reasonable mass estimates. We discuss the possible extension of our method to the mid-infrared WISE All Sky Survey data and the application of our results to the Euclid mission. This technique makes richness-based cluster mass estimates available for large samples of clusters at very low observational cost.
- ID:
- ivo://CDS.VizieR/J/ApJ/569/720
- Title:
- Mass-to-light ratio of galaxy systems
- Short Name:
- J/ApJ/569/720
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We study the mass-to-light ratio of galaxy systems from poor groups to rich clusters and present for the first time a large database for useful comparisons with theoretical predictions. We extend a previous work, where B_j_ band luminosities and optical virial masses were analyzed for a sample of 89 clusters. Here we also consider a sample of 52 more clusters, 36 poor clusters, seven rich groups, and two catalogs, of ~500 groups each, recently identified in the Nearby Optical Galaxy sample by using two different algorithms. We obtain the blue luminosity and virial mass for all systems considered. We devote a large effort to establishing the homogeneity of the resulting values, as well as to considering comparable physical regions, i.e., those included within the virial radius.