- ID:
- ivo://CDS.VizieR/J/ApJ/892/91
- Title:
- UKIRT NIR and Spitzer MIR phot. in NGC 6822
- Short Name:
- J/ApJ/892/91
- Date:
- 19 Jan 2022 08:59:33
- Publisher:
- CDS
- Description:
- The nearby (~500kpc) metal-poor ([Fe/H]~-1.2; Z~30%Z_{sun}_) star-forming galaxy NGC 6822 has a metallicity similar to systems at the epoch of peak star formation. Through identification and study of dusty and dust-producing stars, it is therefore a useful laboratory to shed light on the dust life cycle in the early universe. We present a catalog of sources combining near- and mid-IR photometry from the United Kingdom Infrared Telescope (J, H, and K) and the Spitzer Space Telescope (IRAC 3.6, 4.5, 5.8, and 8.0{mu}m and MIPS 24{mu}m). This catalog is employed to identify dusty and evolved stars in NGC 6822 utilizing three color-magnitude diagrams (CMDs). With diagnostic CMDs covering a wavelength range spanning the near- and mid-IR, we develop color cuts using kernel density estimate (KDE) techniques to identify dust-producing evolved stars, including red supergiant (RSG) and thermally pulsing asymptotic giant branch (TP-AGB) star candidates. In total, we report 1292 RSG candidates, 1050 oxygen-rich AGB star candidates, and 560 carbon-rich AGB star candidates with high confidence in NGC 6822. Our analysis of the AGB stars suggests a robust population inhabiting the central stellar bar of the galaxy, with a measured global stellar metallicity of [Fe/H]=-1.286+/-0.095, consistent with previous studies. In addition, we identify 277 young stellar object (YSO) candidates. The detection of a large number of YSO candidates within a centrally located, compact cluster reveals the existence of an embedded, high-mass star formation region that has eluded previous detailed study. Spitzer I appears to be younger and more active than the other prominent star-forming regions in the galaxy.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/889/44
- Title:
- UKIRT obs. of red supergiants in M31
- Short Name:
- J/ApJ/889/44
- Date:
- 17 Jan 2022 11:49:04
- Publisher:
- CDS
- Description:
- The mass-loss rates of red supergiant stars (RSGs) are poorly constrained by direct measurements, and yet the subsequent evolution of these stars depends critically on how much mass is lost during the RSG phase. In 2012 the Geneva evolutionary group updated their mass-loss prescription for RSGs with the result that a 20M_{sun}_ star now loses 10 times more mass during the RSG phase than in the older models. Thus, higher-mass RSGs evolve back through a second yellow supergiant phase rather than exploding as Type II-P supernovae, in accord with recent observations (the so-called "RSG Problem"). Still, even much larger mass-loss rates during the RSG phase cannot be ruled out by direct measurements of their current dust-production rates, as such mass loss is episodic. Here, we test the models by deriving a luminosity function for RSGs in the nearby spiral galaxy, M31, which is sensitive to the total mass loss during the RSG phase. We carefully separate RSGs from asymptotic giant branch stars in the color-magnitude diagram following the recent method exploited by Yang+ (2019, J/A+A/629/A91) in their Small Magellanic Cloud studies. Comparing our resulting luminosity function with that predicted by the evolutionary models shows that the new prescription for RSG mass loss does an excellent job of matching the observations, and we can readily rule out significantly larger values.
- ID:
- ivo://CDS.VizieR/J/ApJ/878/71
- Title:
- ULXs with multiepoch Spitzer/IRAC obs.
- Short Name:
- J/ApJ/878/71
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a mid-infrared (IR) sample study of nearby ultraluminous X-ray sources (ULXs) using multiepoch observations with the Infrared Array Camera (IRAC) on the Spitzer Space Telescope. Spitzer/IRAC observations taken after 2014 were obtained as part of the Spitzer Infrared Intensive Transients Survey. Our sample includes 96 ULXs located within 10 Mpc. Of the 96 ULXs, 12 have candidate counterparts consistent with absolute mid-IR magnitudes of supergiants, and 16 counterparts exceeded the mid-IR brightness of single supergiants and are thus more consistent with star clusters or non-ULX background active galactic nuclei. The supergiant candidate counterparts exhibit a bimodal color distribution in a Spitzer/IRAC color-magnitude diagram, where "red" and "'blue" ULXs fall in IRAC colors [3.6]-[4.5]~0.7 and [3.6]-[4.5]~0.0, respectively. The mid-IR colors and absolute magnitudes of four "red" and five "blue" ULXs are consistent with those of supergiant B[e] (sgB[e]) and red supergiant (RSG) stars, respectively. Although "blue," RSG-like mid-IR ULX counterparts likely host RSG mass donors; we propose that "red" counterparts are ULXs exhibiting the "B[e] phenomenon" rather than hosts of sgB[e] mass donors. We show that the mid-IR excess from the "red" ULXs is likely due to thermal emission from circumstellar or circumbinary dust. Using dust as a probe for total mass, we estimate mass-loss rates of dM/dt~1x10^-4^M_{sun}_/yr in dust-forming outflows of red ULXs. Based on the transient mid-IR behavior and its relatively flat spectral index, {alpha}=-0.19+/-0.1, we suggest that the mid-IR emission from Holmberg IX X-1 originates from a variable jet.
- ID:
- ivo://CDS.VizieR/J/A+A/561/A47
- Title:
- 8.1um SiO spectra of cool evolved stars
- Short Name:
- J/A+A/561/A47
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The mass-loss mechanism in red giants and red supergiants is not yet understood well. The SiO fundamental lines near 8 m are potentially useful for probing the outer atmosphere, which is essential for clarifying the mass-loss mechanism. However, these lines have been little explored until now. We present high spectral resolution spectroscopic observations of the SiO fundamental lines near 8.1um in 16 bright red giants and red supergiants. Our sample consists of seven normal (i.e., non-Mira) K-M giants (from K1.5 to M6.5), three Mira stars, three optically bright red supergiants, two dusty red supergiants, and the enigmatic object GCIRS3 near the Galactic center.
- ID:
- ivo://CDS.VizieR/J/MNRAS/403/1413
- Title:
- Updated stellar yields from AGB models
- Short Name:
- J/MNRAS/403/1413
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- An updated grid of stellar yields for low- to intermediate-mass thermally pulsing asymptotic giant branch (AGB) stars is presented. The models cover a range in metallicity Z=0.02, 0.008, 0.004 and 0.0001, and masses between 1 and 6M_{sun}_. New intermediate-mass (M>=3M_{sun}_) Z=0.0001 AGB models are also presented, along with a finer mass grid than used in previous studies. The yields are computed using an updated reaction rate network that includes the latest NeNa and MgAl proton capture rates.
- ID:
- ivo://CDS.VizieR/J/AJ/143/121
- Title:
- UV properties of Galactic globulars with GALEX.
- Short Name:
- J/AJ/143/121
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present Galaxy Evolution Explorer (GALEX) data for 44 Galactic globular clusters (GCs) obtained during three GALEX observing cycles between 2004 and 2008. This is the largest homogeneous data set on the UV photometric properties of Galactic GCs ever collected. The sample selection and photometric analysis are discussed, and color-magnitude diagrams (CMDs) are presented. The blue and intermediate-blue horizontal branch is the dominant feature of the UV CMDs of old Galactic GCs. Our sample is large enough to display the remarkable variety of horizontal branch shapes found in old stellar populations. Other stellar types that are obviously detected are blue stragglers and post-core-He burning stars. The main features of UV CMDs of Galactic GCs are briefly discussed. We establish the locus of post-core-He burning stars in the UV CMD and present a catalog of candidate asymptotic giant branch (AGB), AGB-manque, post early-AGB, and post-AGB stars within our cluster sample.
- ID:
- ivo://CDS.VizieR/J/ApJS/234/25
- Title:
- Vanadium transitions in the spectrum of Arcturus
- Short Name:
- J/ApJS/234/25
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We derive a new abundance for vanadium in the bright, mildly metal-poor red giant Arcturus. This star has an excellent high-resolution spectral atlas and well-understood atmospheric parameters, and it displays a rich set of neutral vanadium lines that are available for abundance extraction. We employ a newly recorded set of laboratory FTS spectra to investigate any potential discrepancies in previously reported V I log(gf) values near 900nm. These new spectra support our earlier laboratory transition data and the calibration method utilized in that study. We then perform a synthetic spectrum analysis of weak V I features in Arcturus, deriving log{epsilon}(V)=3.54+/-0.01 ({sigma}=0.04) from 55 lines. There are no significant abundance trends with wavelength, line strength, or lower excitation energy.
- ID:
- ivo://CDS.VizieR/J/AJ/159/21
- Title:
- V and Rc light curves of medium-bright PPNe
- Short Name:
- J/AJ/159/21
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present 10 years of new photometric monitoring of the light variability of five evolved stars with strong mid-infrared emission from surrounding dust. Three are known carbon-rich proto-planetary nebulae (PPNe) with F-G spectral types; the nature of the other two was previously unknown. For the three PPNe, we determine or refine the pulsation periods of IRAS04296+3429 (71 days), 06530-0213 (80 days), and 23304+6147 (84 days). A secondary period was found for each, with a period ratio P_2_/P_1_ of 0.9. The light variations are small, 0.1-0.2mag. These are similar to values found in other PPNe. The other two are found to be giant stars. IRAS09296+1159 pulsates with a period of only 47 days but reaches pulsational light variations of 0.5mag. Supplemental spectroscopy reveals the spectrum of a CH carbon star. IRAS08359-1644 is a G1III star that does not display pulsational variability; rather, it shows nonperiodic decreases of brightness of up to 0.5mag over this 10 year interval. These drops in brightness are reminiscent of the light curves of R Corona Borealis variables, but with much smaller decreases in brightness and are likely due to transient dust obscuration. Its spectral energy distribution is very similar to that of the unusual oxygen-rich giant star HDE233517, which possesses mid-infrared hydrocarbon emission features. These two non-PPNe turn out to be members of the rare group of giant stars with large mid-infrared excesses due to dust, objects which presumably have interesting evolutionary histories.
- ID:
- ivo://CDS.VizieR/J/ApJ/709/1042
- Title:
- Variability in C-rich proto-PNe.
- Short Name:
- J/ApJ/709/1042
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have carried out long-term (14 years) V and R photometric monitoring of 12 carbon-rich proto-planetary nebulae. The light and color curves display variability in all of them. The light curves are complex and suggest multiple periods, changing periods, and/or changing amplitudes, which are attributed to pulsation. A dominant period has been determined for each and found to be in the range of ~150 days for the coolest (G8) to 35-40 days for the warmest (F3). A clear, linear inverse relationship has been found in the sample between the pulsation period and the effective temperature and also an inverse relationship between the amplitude of light variation and the effective temperature. These are consistent with the expectation for a pulsating post-asymptotic giant branch (post-AGB) star evolving toward higher temperature at constant luminosity. The published spectral energy distributions and mid-infrared images show these objects to have cool (200K), detached dust shells and published models imply that intensive mass loss ended 400-2000 years ago.
- ID:
- ivo://CDS.VizieR/J/ApJ/766/116
- Title:
- Variability in proto-PNe. II.
- Short Name:
- J/ApJ/766/116
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have carried out a detailed observational study of the light, color, and velocity variations of two bright, carbon-rich proto-planetary nebulae, IRAS 22223+4327 and 22272+5435. The light curves are based upon our observations from 1994 to 2011, together with published data by Arkhipova and collaborators. They each display four significant periods, with primary periods for IRAS 22223+4327 and 22272+5435 being 90 and 132 days, respectively. For each of them, the ratio of secondary to primary period is 0.95, a value much different from that found in Cepheids, but which may be characteristic of post-asymptotic giant branch (AGB) stars. Fewer significant periods are found in the smaller radial velocity data sets, but they agree with those of the light curves. The color curves generally mimic the light curves, with the objects reddest when faintest. A comparison in seasons when there exist contemporaneous light, color, and velocity curves reveals that the light and color curves are in phase, while the radial velocity curves are ~0.25 P out of phase with the light curves. Thus they differ from what is seen in Cepheids, in which the radial velocity curve is 0.50 P out of phase with the light curve. Comparison of the observed periods and amplitudes with those of post-AGB pulsation models shows poor agreement, especially for the periods, which are much longer than predicted. These observational data, particularly the contemporaneous light, color, and velocity curves, provide an excellent benchmark for new pulsation models of cool stars in the post-AGB, proto-planetary nebula phase.