- ID:
- ivo://CDS.VizieR/J/A+A/600/A81
- Title:
- VLTS. 30Dor O giants and supergiants
- Short Name:
- J/A+A/600/A81
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Tarantula region in the Large Magellanic Cloud contains the richest population of spatially resolved massive O-type stars known so far. This unmatched sample offers an opportunity to test models describing their main-sequence evolution and mass-loss properties. Using ground-based optical spectroscopy obtained in the framework of the VLT-FLAMES Tarantula Survey (VFTS), we aim to determine stellar, photospheric and wind properties of 72 presumably single O-type giants, bright giants and supergiants and to confront them with predictions of stellar evolution and of line-driven mass-loss theories. We apply an automated method for quantitative spectroscopic analysis of O stars combining the non-LTE stellar atmosphere model FASTWIND with the genetic fitting algorithm PIKAIA to determine the following stellar properties: effective temperature, surface gravity, mass-loss rate, helium abundance, and projected rotational velocity. The latter has been constrained without taking into account the contribution from macro-turbulent motions to the line broadening. We present empirical effective temperature versus spectral subtype calibrations at LMC-metallicity for giants and supergiants. The calibration for giants shows a +1kK offset compared to similar Galactic calibrations; a shift of the same magnitude has been reported for dwarfs. The supergiant calibrations, though only based on a handful of stars, do not seem to indicate such an offset. The presence of a strong upturn at spectral type O3 and earlier can also not be confirmed by our data. In the spectroscopic and classical Hertzsprung-Russell diagrams, our sample O stars are found to occupy the region predicted to be the core hydrogen-burning phase by state-of-the-art models. For stars initially more massive than approximately 60M_{sun}_ the giant phase already appears relatively early on in the evolution; the supergiant phase develops later. Bright giants, however, are not systematically positioned between giants and supergiants at M_init_>25M_{sun}. At masses below 60M_{sun} the dwarf phase clearly precedes the giant and supergiant phases; however this behavior seems to break down at $M_init_<18M_{sun}_. Here, stars classified as late O III and II stars occupy the region where O9.5-9.7V stars are expected, but where few such late O V stars are actually seen. Though we can not exclude that these stars represent a physically distinct group, this behaviour may reflect an intricacy in the luminosity classification at late O spectral subtype. Indeed, on the basis of a secondary classification criterion, the relative strength of SiIV to HeI absorption lines, these stars would have been assigned a luminosity class IV or V. Except for five stars, the helium abundance of our sample stars is in agreement with the initial LMC composition. This outcome is independent of their projected spin rates. The aforementioned five stars present moderate projected rotational velocities (i.e., vrot<200km/s) and hence do not agree with current predictions of rotational mixing in main-sequence stars. They may potentially reveal other physics not included in the models such as binary-interaction effects. Adopting theoretical results for the wind velocity law, we find modified wind momenta for LMC stars that are ~0.3dex higher than earlier results. For stars brighter than 10^5^L_[sun}_, that is, in the regime of strong stellar winds, the measured (unclumped) mass-loss rates could be considered to be in agreement with line-driven wind predictions if the clump volume filling factors were f_V_~1/8 to 1/6.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/AJ/153/115
- Title:
- VLT/SINFONI observations of MIPSGAL "bubbles"
- Short Name:
- J/AJ/153/115
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present Very Large Telescope/Spectrograph for INtegral Field Observations in the Near Infrared H- and K-band spectra of potential central stars within the inner 8"-by-8" regions of 55 MIPSGAL "bubbles" (MBs), sub-arcminute circumstellar shells discovered in the mid-IR survey of the Galactic plane with Spitzer/MIPS. At magnitudes brighter than 15, we detect a total of 230 stars in the K band and 179 stars in the H band. We spectrally identify 145 stars in all but three MBs, with average magnitudes of 13.8 and 12.7 respectively, using spectral libraries and previous studies of near-IR stellar spectra. We also use tabulated intrinsic stellar magnitudes and colors to derive distances and extinction values, and to better constrain the classifications of the stars. We reliably identify the central sources for 21 of the 55 MBs, which we classify as follows: one Wolf-Rayet, three luminous blue variable candidates, four early-type (O to F), and 15 late-type (G to M) stars. The 21 central sources are, on average, one magnitude fainter than these in the most recent study of MBs, and we notice a significant drop in the fraction of massive star candidates. For the 34 remaining MBs in our sample, we are unable to identify the central sources due to confusion, low spectroscopic signal-to-noise ratio, and/or lack of detections in the images near the centers of the bubbles. We discuss how our findings compare with previous studies and support the trend, for the most part, between the shells' morphologies in the mid-IR and central sources spectral types.
- ID:
- ivo://CDS.VizieR/J/MNRAS/405/1711
- Title:
- VRIg'i' photometry of 7 M15 giants
- Short Name:
- J/MNRAS/405/1711
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a search for long-period variable (LPV) stars among giant branch stars in M15 which, at [Fe/H]~-2.3, is one of the most metal-poor Galactic globular clusters. We use multicolour optical photometry from the 0.6-m Keele Thornton and 2-m Liverpool Telescopes. Variability of {delta}V~0.15mag is detected in K757 and K825 over unusually long time-scales of nearly a year, making them the most metal-poor LPVs found in a Galactic globular cluster. K825 is placed on the long secondary period sequence, identified for metal-rich LPVs, though no primary period is detectable. We discuss this variability in the context of dust production and stellar evolution at low metallicity, using additional spectra from the 6.5-m Magellan (Las Campanas) telescope. A lack of dust production, despite the presence of gaseous mass loss raises questions about the production of dust and the intracluster medium of this cluster.
- ID:
- ivo://CDS.VizieR/J/AJ/127/840
- Title:
- VRI photometry of Fornax red giants
- Short Name:
- J/AJ/127/840
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Near-infrared spectra were obtained for 117 red giants in the Fornax dwarf spheroidal galaxy with the FORS1 spectrograph on the VLT, in order to study the metallicity distribution of the stars and to lift the age-metallicity degeneracy of the red giant branch (RGB) in the color-magnitude diagram (CMD). Metallicities are derived from the equivalent widths of the infrared calcium triplet lines at 8498, 8542, and 8662{AA} calibrated with data from globular clusters, the open cluster M67, and the LMC. For a substantial portion of the sample, the strength of the calcium triplet is unexpectedly high, clearly indicating that the main stellar population of Fornax is significantly more metal-rich than could be inferred from the position of its RGB in the CMD.
- ID:
- ivo://CDS.VizieR/J/MNRAS/465/3011
- Title:
- VVV high amplitude NIR variable stars
- Short Name:
- J/MNRAS/465/3011
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the discovery of 816 high-amplitude infrared variable stars ({Delta}K_s_>1mag) in 119deg^2^ of the Galactic mid-plane covered by the VISTA Variables in the Via Lactea (VVV) survey. Almost all are new discoveries and about 50 per cent are young stellar objects (YSOs). This provides further evidence that YSOs are the commonest high-amplitude infrared variable stars in the Galactic plane. In the 2010-2014 time series of likely YSOs, we find that the amplitude of variability increases towards younger evolutionary classes (class I and flat-spectrum sources) except on short time-scales (<25d) where this trend is reversed. Dividing the likely YSOs by light-curve morphology, we find 106 with eruptive light curves, 45 dippers, 39 faders, 24 eclipsing binaries, 65 long-term periodic variables (P>100d) and 162 short-term variables. Eruptive YSOs and faders tend to have the highest amplitudes and eruptive systems have the reddest spectral energy distribution (SEDs). Follow-up spectroscopy in a companion paper verifies high accretion rates in the eruptive systems. Variable extinction is disfavoured by the two epochs of colour data. These discoveries increase the number of eruptive variable YSOs by a factor of at least 5, most being at earlier stages of evolution than the known FUor and EXor types. We find that eruptive variability is at least an order of magnitude more common in class I YSOs than class II YSOs. Typical outburst durations are 1-4yr, between those of EXors and FUors. They occur in 3-6 per cent of class I YSOs over a 4yr time span.
656. W Aql APEX spectrum
- ID:
- ivo://CDS.VizieR/J/A+A/642/A20
- Title:
- W Aql APEX spectrum
- Short Name:
- J/A+A/642/A20
- Date:
- 23 Mar 2022 16:31:40
- Publisher:
- CDS
- Description:
- W Aql is an asymptotic giant branch (AGB) star with an atmospheric elemental abundance ratio C/O~=0.98. It has previously been reported to have circumstellar molecular abundances intermediate between those of M-type and C-type AGB stars, which respectively have C/O<1 and C/O>1. This intermediate status is considered typical for S-type stars, although our understanding of the chemical content of their circumstellar envelopes is currently rather limited. We wish to assess the reported intermediate status of W Aql by analysing the line emission of molecules that have not been observed towards this star before. We have performed observations in the frequency range 159-268GHz with the SEPIA/B5 and PI230 instruments on the APEX telescope. We make abundance estimates through direct comparison to available spectra towards a number of well-studied AGB stars and based on rotational diagram analysis in the case of one molecule. From a compilation of our abundance estimates and those found in the literature for two M-type (R Dor, IK Tau), two S-type ({chi} Cyg, W Aql), and two C-type stars (V Aql, IRC +10 216), we conclude that W Aql's circumstellar environment appears considerably closer to that of a C-type AGB star than to that of an M-type AGB star. In particular, we detect emission from C_2_H, SiC_2_, SiN, and HC_3_N, molecules previously only detected towards the circumstellar environment of C-type stars. This conclusion, based on the chemistry of the gaseous component of the circumstellar environment, is further supported by reports in the literature on the presence of atmospheric molecular bands and spectral features of dust species which are typical for C-type AGB stars. Although our observations mainly trace species in the outer regions of the circumstellar environment, our conclusion matches closely that based on recent chemical equilibrium models for the inner wind of S-type stars: the atmospheric and circumstellar chemistry of S-type stars likely resembles that of C-type AGB stars much more closely than that of M-type AGB stars. Further observational investigation of the gaseous circumstellar chemistry of S-type stars is required to characterise its dependence on the atmospheric C/O. Non-equilibrium chemical models of the circumstellar environment of AGB stars need to address the particular class of S-type stars and the chemical variety that is induced by the range in atmospheric C/O.
- ID:
- ivo://CDS.VizieR/J/A+A/578/A119
- Title:
- Water maser emission toward post-AGB and PN
- Short Name:
- J/A+A/578/A119
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Water maser emission at 22GHz is a useful probe for studying the transition between the nearly spherical mass loss in the asymptotic giant branch (AGB) to a collimated one in the post-AGB phase. In their turn, collimated jets in the post-AGB phase could determine the shape of planetary nebulae once photoionization starts. We intend to find new cases of post-AGB stars and planetary nebulae (PNe) with water maser emission, including some especially interesting and rare types: water fountains (evolved objects with high velocity collimated jets traced by water masers) or water-maser-emitting PNe. Since previous studies have shown a higher detection rate of water maser emission in evolved objects that are optically obscured, we selected a sample that contains a significant fraction of post-AGB and young PN candidate sources showing signs of strong obscuration. We searched for water maser emission in 133 evolved objects using the radio telescopes in Robledo de Chavela, Parkes, and Green Bank. We detected water maser emission in 15 sources of our sample, of which seven are reported here for the first time (IRAS 13483-5905, IRAS 14249-5310, IRAS 15408-5413, IRAS 17021-3109, IRAS 17348-2906, IRAS 17393-2727, and IRAS 18361-1203). We identified three water fountain candidates: IRAS 17291-2147, with a total velocity spread of =~96km/s in its water maser components and two sources (IRAS 17021-3109 and IRAS 17348-2906) that show water maser emission whose velocity lies outside the velocity range covered by OH masers. We have also identified IRAS 17393-2727 as a possible new water-maser-emitting PN. The detection rate is higher in obscured objects (14%) than in those with optical counterparts (7%), which is consistent with previous results. Water maser emission seems to be common in objects that are bipolar in the near-IR (43% detection rate in such sources). The water maser spectra of water fountain candidates like IRAS 17291-2147 show significantly fewer maser components than others (e.g., IRAS 18113-2503). We speculate that most post-AGBs may show water maser emission with wide enough velocity spread (>=100km/s) when observed with enough sensitivity and/or for long enough periods of time. Therefore, it may be necessary to single out a special group of "water fountains", probably defined by their high maser luminosities. We also suggest that the presence of both water and OH masers in a PN is a better tracer of its youth, than is the presence of just one of these species.
- ID:
- ivo://CDS.VizieR/J/A+A/608/A145
- Title:
- What is the Milky Way outer halo made of?
- Short Name:
- J/A+A/608/A145
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In a framework where galaxies form hierarchically, extended stellar haloes are predicted to be an ubiquitous feature around Milky Way-like galaxies and to consist mainly of the shredded stellar component of smaller galactic systems. The type of accreted stellar systems are expected to vary according to the specific accretion and merging history of a given galaxy, and so is the fraction of stars formed in-situ versus accreted. Analysis of the chemical properties of Milky Way halo stars out to large Galactocentric radii can provide important insights into the properties of the environment in which the stars that contributed to the build-up of different regions of the Milky Way stellar halo formed. In this work we focus on the outer regions of the Milky Way stellar halo, by determining chemical abundances of halo stars with large present-day Galactocentric distances, >15 kpc. The data-set we acquired consists of high resolution HET/HRS, Magellan/MIKE and VLT/UVES spectra for 28 red giant branch stars covering a wide metallicity range, -3.1<[Fe/H]<-0.6. We show that the ratio of alpha-elements over Fe as a function of [Fe/H] for our sample of outer halo stars is not dissimilar from the pattern shown by MW halo stars from solar neighborhood samples. On the other hand, significant differences appear at [Fe/H]>-1.5 when considering chemical abundance ratios such as [Ba/Fe], [Na/Fe], [Ni/Fe], [Eu/Fe], [Ba/Y]. Qualitatively, this type of chemical abundance trends are observed in massive dwarf galaxies, such as Sagittarius and the Large Magellanic Cloud. This appears to suggest a larger contribution in the outer halo of stars formed in an environment with high initial star formation rate and already polluted by asymptotic giant branch stars with respect to inner halo samples.
- ID:
- ivo://CDS.VizieR/J/ApJ/823/59
- Title:
- WISE and 2MASS photometry of M giant stars
- Short Name:
- J/ApJ/823/59
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Using a spectroscopically confirmed sample of M giants, M dwarfs, and quasars from the LAMOST survey, we assess how well Wide-field Infrared Survey Explorer (WISE) and Two Micron All Sky Survey color cuts can be used to select M giant stars. The WISE bands are very efficient at separating M giants from M dwarfs, and we present a simple classification that can produce a clean and relatively complete sample of M giants. We derive a new photometric relation to estimate the metallicity for M giants, calibrated using data from the APOGEE survey. We find a strong correlation between the (W1-W2) color and [M/H], where almost all of the scatter is due to photometric uncertainties. We show that previous photometric distance relations, which are mostly based on stellar models, may be biased and devise a new empirical distance relation, investigating trends with metallicity and star formation history. Given these relations, we investigate the properties of M giants in the Sagittarius stream. The offset in the orbital plane between the leading and trailing tails is reproduced, and by identifying distant M giants in the direction of the Galactic anticenter, we confirm that the previously detected debris in the outer halo is the apocenter of the trailing tail. We also find tentative evidence supporting an existing overdensity near the leading tail in the northern Galactic hemisphere, possibly an extension to the trailing tail (so-called Branch C). We have measured the metallicity distribution along the stream, finding a clear metallicity offset between the leading and trailing tails, in agreement with models for the stream formation. We include an online table of M giants to facilitate further studies.
- ID:
- ivo://CDS.VizieR/J/AJ/151/152
- Title:
- WOCS. LXXI. Spectroscopy of 5 stars in NGC 6791
- Short Name:
- J/AJ/151/152
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In an optical color-magnitude diagram, sub-subgiants (SSGs) lie redward of the main sequence and fainter than the base of the red giant branch in a region not easily populated by standard stellar-evolution pathways. In this paper, we present multi-epoch radial velocities for five SSG candidates in the old and metal-rich open cluster NGC 6791 (8Gyr, [Fe/H]=+0.30). From these data, we are able to make three-dimensional kinematic membership determinations and confirm four SSG candidates as likely cluster members. We also identify three member SSGs as short-period binary systems and present their orbital solutions. These are the first SSGs with known three-dimensional kinematic membership, binary status, and orbital parameters since the two SSGs in M67 studied by Mathieu et al. We also remark on the other properties of these stars including photometric variability, H{alpha} emission, and X-ray luminosity. The membership confirmation of these SSGs in NGC 6791 strengthens the case that SSGs are a new class of nonstandard stellar evolution products, and that a physical mechanism must be found that explains the evolutionary paths of these stars.