- ID:
- ivo://CDS.VizieR/J/PASJ/55/635
- Title:
- Chandra observations of Monoceros R2
- Short Name:
- J/PASJ/55/635
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report on the results of the Chandra ACIS-I observation on the central region of the Monoceros R2 cloud (Mon R2), a high-mass star-forming region (SFR) at a distance of 830pc. With a deep exposure of ~100ks, we detected 368 X-ray sources, ~80% of which were identified with the near-infrared (NIR) counterparts. We systematically analyzed the spectra and time variability of most of the X-ray emitting sources and provided a comprehensive X-ray source catalog for the first time. Using the J-, H- and K-bands magnitudes of the NIR counterparts, we estimated the evolutionary phase (classical T Tauri stars and weak-lined T Tauri stars) and the mass of the X-ray emitting sources, and analyzed the X-ray properties as a function of the age and mass.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/696/47
- Title:
- Chandra study of Rosette star-forming complex. II.
- Short Name:
- J/ApJ/696/47
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We explore here the young stellar populations in the Rosette Molecular Cloud (RMC) region with high spatial resolution X-ray images from the Chandra X-ray Observatory, which are effective in locating weak-lined T Tauri stars as well as disk-bearing young stars. A total of 395 X-ray point sources are detected, 299 of which (76%) have an optical or near-infrared (NIR) counterpart identified from deep FLAMINGOS images. From X-ray and mass sensitivity limits, we infer a total population of ~1700 young stars in the survey region. Based on smoothed stellar surface density maps, we investigate the spatial distribution of the X-ray sources and define three distinctive structures and substructures within them. Structures B and C are associated with previously known embedded IR clusters, while structure A is a new X-ray-identified unobscured cluster. A high-mass protostar RMCX 89=IRAS 06306+0437 and its associated sparse cluster are studied.
- ID:
- ivo://CDS.VizieR/J/ApJ/615/897
- Title:
- Chandra X-Ray sources in the {gamma} Cyg Field
- Short Name:
- J/ApJ/615/897
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In search of the counterpart to the brightest unidentified gamma-ray source, 3EG J2020+4017 (2CG 078+2), we report on new X-ray and radio observations of the {gamma} Cygni field with the Chandra X-Ray Observatory and with the Green Bank Telescope (GBT). We also report on reanalysis of archival ROSAT data.
- ID:
- ivo://CDS.VizieR/J/ApJ/724/L84
- Title:
- Changes in Titan's atmosphere from Cassini
- Short Name:
- J/ApJ/724/L84
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We use a six-year data set (2004-2010) of mid-infrared spectra measured by Cassini's Composite InfraRed Spectrometer to search for seasonal variations in Titan's atmospheric temperature and composition. During most of Cassini's mission Titan's northern hemisphere has been in winter, with an intense stratospheric polar vortex highly enriched in trace gases, and a single south-to-north circulation cell. Following northern spring equinox in mid-2009, dramatic changes in atmospheric temperature and composition were expected, but until now the temporal coverage of polar latitudes has been too sparse to discern trends. Here, we show that during equinox and post-equinox periods, abundances of trace gases at both poles have begun to increase. We propose that increases in north polar trace gases are due to a seasonal reduction in gas depletion by horizontal mixing across the vortex boundary. A simultaneous south polar abundance increase suggests that Titan is now entering, or is about to enter, a transitional circulation regime with two branches, rather than the single branch circulation pattern previously observed.
- ID:
- ivo://CDS.VizieR/J/ApJ/858/71
- Title:
- CHARA array obs. of 13 AB Dor moving group stars
- Short Name:
- J/ApJ/858/71
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present interferometric measurements obtained with the CHARA Array of 13 adolescent-age stars in nearby moving groups. The motivation was to spatially resolve the largest stars and to search for binary companions. Nine stars have diameters smaller than the resolution limit and no evidence for companions within 0.5-50mas and {Delta}H<2.0mag. The diameters of three stars were spatially resolved: GJ 159 (0.582+/-0.016mas) and GJ 393 (0.564+/-0.021mas) in the AB Dor moving group, and former member HD 89744 (0.556+/-0.032mas). Combining the angular diameters with their distances and bolometric fluxes, we measured radii and effective temperatures. The temperatures of GJ 159 (6286+/-123K) and GJ 393 (3515+/-68K) are consistent with spectroscopic measurements. Comparisons with evolutionary models show that HD 89744 has evolved off the main sequence. GJ 159 and GJ 393 lie within 1.5{sigma} of the zero-age main sequence, complicating their age estimates because it is unclear whether the stars are contracting or expanding. GJ 159 has a mass of 1.2+/-0.1M_{sun}_ with an age spanning 0.021-3.0Gyr. Its debris disk and lithium abundance favor a young age. GJ 393 has a mass of 0.42+/-0.03M_{sun}_ and a lower limit on its age 0.06Gyr. This overlaps with the age of the moving group; however, an older age would be more consistent with its slow rotation, low activity, and luminosity, suggesting that GJ 393 is a kinematic interloper.
- ID:
- ivo://CDS.VizieR/J/ApJ/660/1556
- Title:
- Characterization of dusty debris disks
- Short Name:
- J/ApJ/660/1556
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Dusty debris disks around main-sequence stars are signposts for the existence of planetesimals and exoplanets. From cross-correlating Hipparcos stars with the IRAS catalogs, we identify 146 stars within 120pc of Earth that show excess emission at 60um. This search took special precautions to avoid false positives. Our sample is reasonably well distributed from late B to early K-type stars, but it contains very few later type stars. Even though IRAS flew more than 20 years ago and many astronomers have cross-correlated its catalogs with stellar catalogs, we were still able to newly identify debris disks at as many as 33 main-sequence stars; of these, 32 are within 100pc of Earth. The power of an all-sky survey satellite like IRAS is evident when comparing our 33 new debris disks with the total of only 22 dusty debris disk stars first detected with the more sensitive, but pointed, satellite ISO. Our investigation focuses on the mass, dimensions, and evolution of dusty debris disks.
- ID:
- ivo://CDS.VizieR/J/AJ/161/183
- Title:
- Chemical abundances in 52 M-giant stars
- Short Name:
- J/AJ/161/183
- Date:
- 18 Jan 2022
- Publisher:
- CDS
- Description:
- We measured ^35^Cl abundances in 52-M giants with metallicities in the range -0.5<[Fe/H]<0.12. Abundances and atmospheric parameters were derived using infrared spectra from CSHELL on the NASA Infrared Telescope Facility and from optical echelle spectra. We measured Cl abundances by fitting a H^35^Cl molecular feature at 3.6985{mu}m with synthetic spectra. We also measured the abundances of O, Ca, Ti, and Fe using atomic absorption lines. We find that the [Cl/Fe] ratio for our stars agrees with chemical evolution models of Cl, and the [Cl/Ca] ratio is broadly consistent with the solar ratio over our metallicity range. Both indicate that Cl is primarily made in core-collapse supernovae with some contributions from Type Ia supernovae. We suggest that other potential nucleosynthesis processes, such as the {nu}-process, are not significant producers of Cl. Finally, we also find our Cl abundances are consistent with HII and planetary nebular abundances at a given oxygen abundance, although there is scatter in the data.
- ID:
- ivo://CDS.VizieR/J/AJ/161/128
- Title:
- Chemical composition of 15 red giant stars with HPF
- Short Name:
- J/AJ/161/128
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have used the Habitable Zone Planet Finder (HPF) to gather high-resolution, high signal-to-noise near-infrared spectra of 13 field red horizontal branch (RHB) stars, one open cluster giant, and one very metal-poor halo red giant. The HPF spectra cover the 0.81-1.28{mu}m wavelength range of the zyJ bands, partially filling the gap between the optical (0.4-1.0{mu}m) and infrared (1.5-2.4{mu}m) spectra already available for the program stars. We derive abundances of 17 species from LTE-based computations involving equivalent widths and spectrum syntheses, and estimate abundance corrections for the species that are most affected by departures from LTE in RHB stars. Generally good agreement is found between HPF-based metallicities and abundance ratios and those from the optical and infrared spectral regions. Light element transitions dominate the HPF spectra of these red giants, and HPF data can be used to derive abundances from species with poor or no representation in optical spectra (e.g., C i, P i, S i, K i). Attention is drawn to the HPF abundances in two field solar-metallicity RHB stars of special interest: one with an extreme carbon isotope ratio, and one with a rare, very large lithium content. The latter star is unique in our sample in exhibiting very strong He i 10830{AA} absorption. The abundances of the open cluster giant concur with those derived from other wavelength regions. Detections of CI and SI in HD122563 are reported, yielding the lowest metallicity determination of [S/Fe] from more than one multiplet.
- ID:
- ivo://CDS.VizieR/J/A+A/527/A88
- Title:
- Chemistry in infrared dark clouds
- Short Name:
- J/A+A/527/A88
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Massive stars play an important role in shaping the structure of galaxies. Infrared dark clouds (IRDCs), with their low temperatures and high densities, have been identified as the potential birthplaces of massive stars. In order to understand the formation processes of massive stars, the physical and chemical conditions in infrared dark clouds have to be characterized. The goal of this paper is to investigate the chemical composition of a sample of southern infrared dark clouds. One important aspect of the observations is to check, whether the molecular abundances in IRDCs are similar to the low-mass pre-stellar cores, or if they show signatures of more evolved evolutionary stages. We performed observations toward 15 IRDCs in the frequency range between 86 and 93GHz using the 22-m Mopra radio telescope. In total, 13 molecular species comprising N_2_H^+^, ^13^CS, CH_3_CN, HC_3_N, HNC, HCO^+^, HCN, HNCO, C_2_H, SiO, H^13^CO^+^, H^13^CN, and CH_3_C_2_H were observed for all targets. Hence, we included in general species appropriate for elevated densities, where some of them trace the more quiescent gas, while others are sensitive to more dynamical processes.
- ID:
- ivo://CDS.VizieR/J/other/RAA/10.67
- Title:
- CH_3_OH maser sources
- Short Name:
- J/other/RAA/10.6
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Using the 13.7m telescope of the Purple Mountain Observatory (PMO), a survey of the J=1-0 lines of CO and its isotopes was carried out on 98 methanol maser sources in January 2008. Eighty-five sources have infrared counterparts within one arcmin.