- ID:
- ivo://CDS.VizieR/J/MNRAS/431/308
- Title:
- SN 2011fu BVRI light curves
- Short Name:
- J/MNRAS/431/308
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the low-resolution spectroscopic and UBVRI broad-band photometric investigations of the Type IIb supernova (SN) 2011fu, discovered in UGC 01626. The photometric follow-up of this event was initiated a few days after the explosion and covers a period of about 175d. The early-phase light curve shows a rise, followed by steep decay in all bands, and shares properties very similar to that seen for SN 1993J, with a possible detection of the adiabatic cooling phase. Modelling of the quasi-bolometric light curve suggests that the progenitor had an extended (~1x10^13^cm), low-mass (~0.1M{sun}) H-rich envelope on top of a dense, compact (~2x10^11^cm), more massive (~1.1M{sun}) He-rich core. The nickel mass synthesized during the explosion was found to be ~0.21M{sun}, slightly larger than that seen for other Type IIb SNe. The spectral modelling performed with synow suggests that the early-phase line velocities for H and Feii features were ~16000 and ~14000km/s, respectively. Then, the velocities declined up to day +40 and became nearly constant at later epochs.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/MNRAS/454/95
- Title:
- SN 2011fu UBVRI griz JHKs light curves
- Short Name:
- J/MNRAS/454/95
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present optical and near-infrared observations of the type IIb supernova (SN) 2011fu from a few days to ~300d after explosion. The SN presents a double-peaked light curve (LC) similar to that of SN 1993J, although more luminous and with a longer cooling phase after the primary peak. The spectral evolution is also similar to SN 1993J's, with hydrogen dominating the spectra to ~40d, then helium gaining strength, and nebular emission lines appearing from ~60d post-explosion. The velocities derived from the P-Cygni absorptions are overall similar to those of other type IIb SNe. We have found a strong similarity between the oxygen and magnesium line profiles at late times, which suggests that these lines are forming at the same location within the ejecta. The hydrodynamical modelling of the pseudo-bolometric LC and the observed photospheric velocities suggest that SN 2011fu was the explosion of an extended star (R~450R_{sun}_), in which 1.3x10^51^erg of kinetic energy were released and 0.15M_{sun}_ of 56Ni were synthesized. In addition, a better reproduction of the observed early pseudo-bolometric LC is achieved if a more massive H-rich envelope than for other type IIb SNe is considered (0.3M_{sun}_). The hydrodynamical modelling of the LC and the comparison of our late-time spectra with nebular spectral models for type IIb SNe, point to a progenitor for SN 2011fu with a Zero Age Main Sequence (ZAMS) mass of 13-18M_{sun}_.
- ID:
- ivo://CDS.VizieR/J/ApJ/882/L15
- Title:
- SN 2018hna photometry & spectroscopy obs.
- Short Name:
- J/ApJ/882/L15
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- High-cadence ultraviolet, optical, and near-infrared photometric and low-resolution spectroscopic observations of the peculiar Type II supernova (SN) 2018hna are presented. The early-phase multiband light curves (LCs) exhibit the adiabatic cooling envelope emission following the shock breakout up to ~14 days from the explosion. SN 2018hna has a rise time of ~88 days in the V band, similar to SN 1987A. A ^56^Ni mass of ~0.087+/-0.004M_{sun}_ is inferred for SN 2018hna from its bolometric LC. Hydrodynamical modeling of the cooling phase suggests a progenitor with a radius ~50R_{sun}_, a mass of ~14-20M_{sun}_, and an explosion energy of ~1.7-2.9x10^51^erg. The smaller inferred radius of the progenitor than a standard red supergiant is indicative of a blue supergiant progenitor of SN 2018hna. A subsolar metallicity (~0.3Z_{sun}_) is inferred for the host galaxy UGC 07534, concurrent with the low-metallicity environments of 1987A-like events.
- ID:
- ivo://CDS.VizieR/J/A+A/630/A76
- Title:
- SN2016hnk photometry and spectroscopy
- Short Name:
- J/A+A/630/A76
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a comprehensive dataset of optical and near-infrared photometry and spectroscopy of type Ia supernova (SN) 2016hnk, combined with integral field spectroscopy (IFS) of its host galaxy, MCG -01-06-070, and nearby environment. Our goal with this complete dataset is to understand the nature of this peculiar object. Methods: Properties of the SN local environment are characterized by means of single stellar population synthesis applied to IFS observations taken two years after the SN exploded. We performed detailed analyses of SN photometric data by studying its peculiar light and color curves. SN 2016hnk spectra were compared to other 1991bg-like SNe Ia, 2002es-like SNe Ia, and Ca-rich transients. In addition, we used abundance stratification modeling to identify the various spectral features in the early phase spectral sequence and also compared the dataset to a modified non-LTE model previously produced for the subluminous SN1999by. Results: SN 2016hnk is consistent with being a subluminous (MB=-16.7mag, sBV=0.43+/-0.03), highly reddened object. The IFS of its host galaxy reveals both a significant amount of dust at the SN location, residual star formation, and a high proportion of old stellar populations in the local environment compared to other locations in the galaxy, which favors an old progenitor for SN 2016hnk. Inspection of a nebular spectrum obtained one year after maximum contains two narrow emission lines attributed to the forbidden [CaII] {lambda}{lambda}7291,7324 doublet with a Doppler shift of 700km/s. Based on various observational diagnostics, we argue that the progenitor of SN 2016hnk was likely a near Chandrasekhar-mass (MCh) carbon-oxygen white dwarf that produced 0.108M_{sun}_ of 56 Ni. Our modeling suggests that the narrow [CaII] features observed in the nebular spectrum are associated with 48 Ca from electron capture during the explosion, which is expected to occur only in white dwarfs that explode near or at the MCh limit.
- ID:
- ivo://CDS.VizieR/J/ApJ/769/39
- Title:
- SN Ibn PS1-12sk optical and NIR light curves
- Short Name:
- J/ApJ/769/39
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report on our discovery and observations of the Pan-STARRS1 supernova (SN) PS1-12sk, a transient with properties that indicate atypical star formation in its host galaxy cluster or pose a challenge to popular progenitor system models for this class of explosion. The optical spectra of PS1-12sk classify it as a Type Ibn SN (SN Ibn; cf. SN 2006jc), dominated by intermediate-width (3x10^3^km/s) and time variable He I emission. Our multi-wavelength monitoring establishes the rise time dt ~9-23 days and shows an NUV-NIR spectral energy distribution with temperature >~17x10^3^K and a peak magnitude of M_z_=-18.88+/-0.02mag. SN Ibn spectroscopic properties are commonly interpreted as the signature of a massive star (17-100M_{sun}_) explosion within an He-enriched circumstellar medium. However, unlike previous SNe Ibn, PS1-12sk is associated with an elliptical brightest cluster galaxy, CGCG 208-042 (z=0.054) in cluster RXC J0844.9+4258. The expected probability of an event like PS1-12sk in such environments is low given the measured infrequency of core-collapse SNe in red-sequence galaxies compounded by the low volumetric rate of SN Ibn. Furthermore, we find no evidence of star formation at the explosion site to sensitive limits ({Sigma}_H{alpha}_<~2x10^-3^M_{sun}_/yr/kpc2). We therefore discuss white dwarf binary systems as a possible progenitor channel for SNe Ibn. We conclude that PS1-12sk represents either a fortuitous and statistically unlikely discovery, evidence for a top-heavy initial mass function in galaxy cluster cooling flow filaments, or the first clue suggesting an alternate progenitor channel for SNe Ibn.
- ID:
- ivo://CDS.VizieR/J/A+A/650/A174
- Title:
- SN 2018ijp transient gri light curves
- Short Name:
- J/A+A/650/A174
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- In this paper, we discuss the outcomes of the follow-up campaign of SN 2018ijp, discovered as part of the Zwicky Transient Facility survey for optical transients. Its first spectrum shows similarities to broad-lined Type Ic supernovae around maximum light, whereas later spectra display strong signatures of interaction between rapidly expanding ejecta and a dense H-rich circumstellar medium, coinciding with a second peak in the photometric evolution of the transient. This evolution, along with the results of modeling of the first light-curve peak, suggests a scenario where a stripped star exploded within a dense circumstellar medium. The two main phases in the evolution of the transient could be interpreted as a first phase dominated by radioactive decays, and a later interaction-dominated phase where the ejecta collide with a pre-existing shell. We therefore discuss SN 2018jp within the context of a massive star depleted of its outer layers exploding within a dense H-rich circumstellar medium.
- ID:
- ivo://CDS.VizieR/J/MNRAS/433/1312
- Title:
- SN2009ip UBVRI, UVOT and JHK light curves
- Short Name:
- J/MNRAS/433/1312
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present ultraviolet, optical and near-infrared observations of the interacting transient SN 2009ip, covering the period from the start of the outburst in 2012 October until the end of the 2012 observing season. The transient reached a peak magnitude of M_V_=-17.7mag, with a total integrated luminosity of 1.9x10^49^erg over the period of 2012 August-December. The light curve fades rapidly, dropping by 4.5mag from the V-band peak in 100d. The optical and near-infrared spectra are dominated by narrow emission lines with broad electron scattering wings, signalling a dense circumstellar environment, together with multiple components of broad emission and absorption in H and He at velocities in the range 0.5-1.2x10^4^km/s. We see no evidence for nucleosynthesized material in SN 2009ip, even in late-time pseudo-nebular spectra. We set a limit of <0.02M_{sun}_ on the mass of any possible synthesized 56Ni from the late-time light curve. A simple model for the narrow Balmer lines is presented and used to derive number densities for the circumstellar medium in the range ~10^9^-10^10^cm^-3^. Our near-infrared data do not show any excess at longer wavelengths, and we see no other signs of dust formation. Our last data, taken in 2012 December, show that SN 2009ip has spectroscopically evolved to something quite similar to its appearance in late 2009, albeit with higher velocities. It is possible that neither of the eruptive and high-luminosity events of SN 2009ip were induced by a core collapse. We show that the peak and total integrated luminosity can be due to the efficient conversion of kinetic energy from colliding ejecta, and that around 0.05-0.1M_{sun}_ of material moving at 0.5-1x10^4^km/s could comfortably produce the observed luminosity. We discuss the possibility that these shells were ejected by the pulsational pair instability mechanism, in which case the progenitor star may still exist, and will be observed after the current outburst fades. The long-term monitoring of SN 2009ip, due to its proximity, has given the most extensive data set yet gathered of a high-luminosity interacting transient and its progenitor. It is possible that some purported Type IIn supernovae are in fact analogues of the 2012b event and that pre-explosion outbursts have gone undetected.
2648. SN 2009jf light curves
- ID:
- ivo://CDS.VizieR/J/MNRAS/416/3138
- Title:
- SN 2009jf light curves
- Short Name:
- J/MNRAS/416/3138
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present an extensive set of photometric and spectroscopic data for SN 2009jf, a nearby Type Ib supernova (SN), spanning from ~20d before B-band maximum to 1yr after maximum. We show that SN 2009jf is a slowly evolving and energetic stripped-envelope SN and is likely from a massive progenitor (25-30M_{sun}_). The large progenitor's mass allows us to explain the complete hydrogen plus helium stripping without invoking the presence of a binary companion.
- ID:
- ivo://CDS.VizieR/J/PAZh/37/837
- Title:
- SN 2009nr UBVRI light curves
- Short Name:
- J/PAZh/37/837
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the results of our UBVRI CCD photometry for the second brightest supernova of 2009, SN 2009nr, discovered during a sky survey with the telescopes of the MASTER robotic network. Its light and color curves and bolometric light curves have been constructed. The light-curve parameters and the maximum luminosity have been determined. SN 2009nr is shown to be similar in light-curve shape and maximum luminosity to SN 1991T, which is the prototype of the class of supernovae Ia with an enhanced luminosity. SN 2009nr exploded far from the center of the spiral galaxy UGC 8255 and most likely belongs to its old halo population. We hypothesize that this explosion is a consequence of the merger of white dwarfs.
- ID:
- ivo://CDS.VizieR/J/A+A/611/A58
- Title:
- SN 2007on and SN 2011iv light curves
- Short Name:
- J/A+A/611/A58
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present an analysis of ultraviolet (UV) to near-infrared observations of the fast-declining Type Ia supernovae (SNe Ia) 2007on and 2011iv, hosted by the Fornax cluster member NGC 1404. The B-band light curves of SN 2007on and SN 2011iv are characterised by {Delta}m15(B) decline-rate values of 1.96mag and 1.77mag, respectively. Although they have similar decline rates, their peak B- and H-band magnitudes differ by ~0.60mag and ~0.35mag, respectively. After correcting for the luminosity vs. decline rate and the luminosity vs. colour relations, the peak B-band and H-band light curves provide distances that differ by ~14% and ~9%, respectively. These findings serve as a cautionary tale for the use of transitional SNe Ia located in early-type hosts in the quest to measure cosmological parameters. Interestingly, even though SN 2011iv is brighter and bluer at early times, by three weeks past maximum and extending over several months, its B-V colour is 0.12mag redder than that of SN 2007on. To reconcile this unusual behaviour, we turn to guidance from a suite of spherical one-dimensional Chandrasekhar-mass delayed-detonation explosion models. In this context, ^56^Ni production depends on both the so-called transition density and the central density of the progenitor white dwarf. To first order, the transition density drives the luminosity-width relation, while the central density is an important second-order parameter. Within this context, the differences in the B-V colour evolution along the Lira regime suggest that the progenitor of SN 2011iv had a higher central density than SN 2007on.