- ID:
- ivo://CDS.VizieR/J/ApJ/856/170
- Title:
- Tracers of stellar mass-loss. II.
- Short Name:
- J/ApJ/856/170
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- I present integrated colors and surface brightness fluctuation magnitudes in the mid-infrared (IR), derived from stellar population synthesis models that include the effects of the dusty envelopes around thermally pulsing asymptotic giant branch (TP-AGB) stars. The models are based on the Bruzual & Charlot CB* isochrones; they are single-burst, range in age from a few Myr to 14Gyr, and comprise metallicities between Z=0.0001 and Z=0.04. I compare these models to mid-IR data of AGB stars and star clusters in the Magellanic Clouds, and study the effects of varying self-consistently the mass-loss rate, the stellar parameters, and the output spectra of the stars plus their dusty envelopes. I find that models with a higher than fiducial mass-loss rate are needed to fit the mid-IR colors of "extreme" single AGB stars in the Large Magellanic Cloud. Surface brightness fluctuation magnitudes are quite sensitive to metallicity for 4.5{mu}m and longer wavelengths at all stellar population ages, and powerful diagnostics of mass-loss rate in the TP-AGB for intermediate-age populations, between 100Myr and 2-3Gyr.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/AJ/159/83
- Title:
- Transit analysis for the K2-25 system
- Short Name:
- J/AJ/159/83
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The abundance of planets with orbital periods of a few to tens of days suggests that exoplanets experience complex dynamical histories. Planets in young stellar clusters or associations have well-constrained ages and therefore provide an opportunity to explore the dynamical evolution of exoplanets. K2-25b is a Neptune-sized planet in an eccentric, 3.48day orbit around an M4.5 dwarf star in the Hyades cluster (650Myr). In order to investigate its non-zero eccentricity and tight orbit, we analyze transit timing variations (TTVs) which could reveal clues to the migration processes that may have acted on the planet. We obtain 12 nonconsecutive transits using the MEarth observatories and long-term photometric monitoring, which we combine with 10 transits from the Spitzer Space Telescope and 20 transits from K2. Tables of MEarth photometry accompany this work. We fit each transit lightcurve independently. We first investigate whether inhomogeneities on the stellar surface (such as spots or plages) are differentially affecting our transit observations. The measured transit depth does not vary significantly between transits, though we see some deviations from the fiducial transit model. We then looked for TTVs as evidence of a nontransiting perturber in the system. We find no evidence for >1M_{Earth}_ mass companions within a 2:1 period ratio, or for >5M_{Earth}_ mass planets within a 7:2 period ratio.
- ID:
- ivo://CDS.VizieR/J/AJ/154/49
- Title:
- Transiting Exoplanet Monitoring Project. II. HAT-P-33
- Short Name:
- J/AJ/154/49
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present 10 R-band photometric observations of eight different transits of the hot Jupiter HAT-P-33b, which has been targeted by our Transiting Exoplanet Monitoring Project. The data were obtained by two telescopes at the Xinglong Station of National Astronomical Observatories of China (NAOC) from 2013 December through 2016 January, and exhibit photometric scatter of 1.6-3.0mmag. After jointly analyzing the previously published photometric data, radial-velocity (RV) measurements, and our new light curves, we revisit the system parameters and orbital ephemeris for the HAT-P-33b system. Our results are consistent with the published values except for the planet to star radius ratio (R_P_/R_*_), the ingress/egress duration ({tau}) and the total duration (T_14_), which together indicate a slightly shallower and shorter transit shape. Our results are based on more complete light curves, whereas the previously published work had only one complete transit light curve. No significant anomalies in Transit Timing Variations (TTVs) are found, and we place upper mass limits on potential perturbers, largely supplanting the loose constraints provided by the extant RV data. The TTV limits are stronger near mean-motion resonances, especially for the low-order commensurabilities. We can exclude the existence of a perturber with mass larger than 0.6, 0.3, 0.5, 0.5, and 0.3M_{Earth}_ near the 1:3, 1:2, 2:3, 3:2, and 2:1 resonances, respectively.
- ID:
- ivo://CDS.VizieR/J/ApJ/809/77
- Title:
- Transiting Exoplanet Survey Satellite (TESS)
- Short Name:
- J/ApJ/809/77
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Transiting Exoplanet Survey Satellite (TESS) is a NASA-sponsored Explorer mission that will perform a wide-field survey for planets that transit bright host stars. Here, we predict the properties of the transiting planets that TESS will detect along with the EB stars that produce false-positive photometric signals. The predictions are based on Monte Carlo simulations of the nearby population of stars, occurrence rates of planets derived from Kepler, and models for the photometric performance and sky coverage of the TESS cameras. We expect that TESS will find approximately 1700 transiting planets from 2x10^5^ pre-selected target stars. This includes 556 planets smaller than twice the size of Earth, of which 419 are hosted by M dwarf stars and 137 are hosted by FGK dwarfs. Approximately 130 of the R<2R_{Earth}_ planets will have host stars brighter than Ks=9. Approximately 48 of the planets with R<2R_{Earth}_ lie within or near the habitable zone (0.2<S/S_{Earth}_<2); between 2 and 7 such planets have host stars brighter than Ks=9. We also expect approximately 1100 detections of planets with radii 2-4R_{Earth}_, and 67 planets larger than 4R_{Earth}_. Additional planets larger than 2R_{Earth}_ can be detected around stars that are not among the pre-selected target stars, because TESS will also deliver full-frame images at a 30-minute cadence. The planet detections are accompanied by over 1000 astrophysical false positives. We discuss how TESS data and ground-based observations can be used to distinguish the false positives from genuine planets. We also discuss the prospects for follow-up observations to measure the masses and atmospheres of the TESS planets.
- ID:
- ivo://CDS.VizieR/J/AJ/153/191
- Title:
- Transiting planet GJ 1132
- Short Name:
- J/AJ/153/191
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Detecting the atmospheres of low-mass, low-temperature exoplanets is a high-priority goal on the path to ultimately detecting biosignatures in the atmospheres of habitable exoplanets. High-precision HST observations of several super-Earths with equilibrium temperatures below 1000K have to date all resulted in featureless transmission spectra, which have been suggested to be due to high-altitude clouds. We report the detection of an atmospheric feature in the atmosphere of a 1.6M_{Earth}_ exoplanet, GJ 1132 b, with an equilibrium temperature of ~600K and orbiting a nearby M dwarf. We present observations of nine transits of the planet obtained simultaneously in the griz and JHK passbands. We find an average radius of 1.43+/-0.16R_{Earth}_ for the planet, averaged over all the passbands, and a radius of 0.255+/-0.023R_{sun}_ for the star, both of which are significantly greater than previously found. The planet radius can be decomposed into a "surface radius" at ~1.375R_{Earth}_ overlaid by atmospheric features that increase the observed radius in the z and K bands. The z-band radius is 4{sigma} higher than the continuum, suggesting a strong detection of an atmosphere. We deploy a suite of tests to verify the reliability of the transmission spectrum, which are greatly helped by the existence of repeat observations. The large z-band transit depth indicates strong opacity from H_2_O and/or CH_4_ or a hitherto-unconsidered opacity. A surface radius of 1.375+/-0.16R_{Earth}_ allows for a wide range of interior compositions ranging from a nearly Earth-like rocky interior, with ~70% silicate and ~30% Fe, to a substantially H_2_O-rich water world.
- ID:
- ivo://CDS.VizieR/J/AJ/154/224
- Title:
- Transiting planets in young clusters from K2
- Short Name:
- J/AJ/154/224
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Detection of transiting exoplanets around young stars is more difficult than for older systems owing to increased stellar variability. Nine young open cluster planets have been found in the K2 data, but no single analysis pipeline identified all planets. We have developed a transit search pipeline for young stars that uses a transit-shaped notch and quadratic continuum in a 12 or 24 hr window to fit both the stellar variability and the presence of a transit. In addition, for the most rapid rotators (P_rot_<2 days) we model the variability using a linear combination of observed rotations of each star. To maximally exploit our new pipeline, we update the membership for four stellar populations observed by K2 (Upper Scorpius, Pleiades, Hyades, Praesepe) and conduct a uniform search of the members. We identify all known transiting exoplanets in the clusters, 17 eclipsing binaries, one transiting planet candidate orbiting a potential Pleiades member, and three orbiting unlikely members of the young clusters. Limited injection recovery testing on the known planet hosts indicates that for the older Praesepe systems we are sensitive to additional exoplanets as small as 1-2 R_{Earth}_, and for the larger Upper Scorpius planet host (K2-33) our pipeline is sensitive to ~4 R_{Earth}_ transiting planets. The lack of detected multiple systems in the young clusters is consistent with the expected frequency from the original Kepler sample, within our detection limits. With a robust pipeline that detects all known planets in the young clusters, occurrence rate testing at young ages is now possible.
- ID:
- ivo://CDS.VizieR/J/ApJ/712/925
- Title:
- Transition circumstellar disks in Ophiuchus
- Short Name:
- J/ApJ/712/925
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have obtained millimeter-wavelength photometry, high-resolution optical spectroscopy, and adaptive optics near-infrared imaging for a sample of 26 Spitzer-selected transition circumstellar disks. All of our targets are located in the Ophiuchus molecular cloud (d~125pc) and have spectral energy distributions (SEDs) suggesting the presence of inner opacity holes. We use these ground-based data to estimate the disk mass, multiplicity, and accretion rate for each object in our sample in order to investigate the mechanisms potentially responsible for their inner holes. We find that transition disks are a heterogeneous group of objects, with disk masses ranging from <0.6 to 40M_JUP_ and accretion rates ranging from <10^-11^ to 10^-7^M_{sun}_/yr, but most tend to have much lower masses and accretion rates than "full disks" (i.e., disks without opacity holes). Eight of our targets have stellar companions: six of them are binaries and the other two are triple systems. In four cases, the stellar companions are close enough to suspect they are responsible for the inferred inner holes. We find that nine of our 26 targets have low disk mass (<2.5M_JUP_) and negligible accretion (<10^-11^M_{sun}_/yr), and are thus consistent with photoevaporating (or photoevaporated) disks. Four of these nine non-accreting objects have fractional disk luminosities <10^-3^ and could already be in a debris disk stage. Seventeen of our transition disks are accreting. Thirteen of these accreting objects are consistent with grain growth. The remaining four accreting objects have SEDs suggesting the presence of sharp inner holes, and thus are excellent candidates for harboring giant planets.
- ID:
- ivo://CDS.VizieR/J/ApJ/749/79
- Title:
- Transition disks. II. Southern MoC
- Short Name:
- J/ApJ/749/79
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Transition disk objects are pre-main-sequence stars with little or no near-IR excess and significant far-IR excess, implying inner opacity holes in their disks. Here we present a multifrequency study of transition disk candidates located in Lupus I, III, IV, V, VI, Corona Australis, and Scorpius. Complementing the information provided by Spitzer with adaptive optics (AO) imaging (NaCo, VLT), submillimeter photometry (APEX), and echelle spectroscopy (Magellan, Du Pont Telescopes), we estimate the multiplicity, disk mass, and accretion rate for each object in our sample in order to identify the mechanism potentially responsible for its inner hole. We find that our transition disks show a rich diversity in their spectral energy distribution morphology, have disk masses ranging from <~1 to 10M_JUP_, and accretion rates ranging from <~10^-11^ to 10^-7.7^M_{sun}_/yr. Of the 17 bona fide transition disks in our sample, three, nine, three, and two objects are consistent with giant planet formation, grain growth, photoevaporation, and debris disks, respectively. Two disks could be circumbinary, which offers tidal truncation as an alternative origin of the inner hole.
- ID:
- ivo://CDS.VizieR/J/AJ/143/95
- Title:
- Transit light curves of HAT-P-12
- Short Name:
- J/AJ/143/95
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present new photometric data of the transiting planet HAT-P-12b observed in 2011. Our three transit curves are modeled using the JKTEBOP code and adopting the quadratic limb-darkening law. Including our measurements, 18 transit times spanning about 4.2yr were used to determine the improved ephemeris with a transit epoch of 2454187.85560+/-0.00011BJD and an orbital period of 3.21305961+/-0.00000035days. The physical properties of the star-planet system are computed using empirical calibrations from eclipsing binary stars and stellar evolutionary models, combined with both our transit parameters and previously known spectroscopic results. We found that the absolute dimensions of the host star are M_A_=0.73+/-0.02M{sun}, R_A_=0.70+/-0.01R_{sun}_, log g_A_=4.61+/-0.02, p_A_=2.10+/-0.09{rho}{sun}, and L_A_=0.21+/-0.01L_{sun}_. The planetary companion has M_b_=0.21+/-0.01M_{Jup}_, R_b_=0.94+/-0.01R_{Jup}_, log g_b_=2.77+/-0.02, {rho}_b_=0.24+/-0.01{rho}_{Jup}_, and T_eq_=960+/-14K. Our results agree well with standard models of irradiated gas giants with a core mass of 11.3M_{earth}_.
- ID:
- ivo://CDS.VizieR/J/A+A/538/A46
- Title:
- Transit observations of GJ1214b
- Short Name:
- J/A+A/538/A46
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- GJ1214b, the 6.55 Earth-mass transiting planet recently discovered by the MEarth team, has a mean density of 35% of that of the Earth. It is thought that this planet is either a mini-Neptune, consisting of a rocky core with a thick, hydrogen-rich atmosphere, or a planet with a composition dominated by water. In the case of a hydrogen-rich atmosphere, molecular absorption and scattering processes may result in detectable radius variations as a function of wavelength. The aim of this paper is to measure these variations. We have obtained observations of the transit of GJ1214b in the r- and I-band with the Isaac Newton Telescope (INT), in the g-, r-, i- and z-bands with the 2.2m MPI/ESO telescope, in the Ks-band with the Nordic Optical Telescope (NOT), and in the Kc-band with the William Herschel Telescope (WHT). By comparing the transit depth between the the different bands, which is a measure for the planet-to-star size ratio, the atmosphere is investigated. We do not detect clearly significant variations in the planet-to-star size ratio as function of wavelength. Although the ratio at the shortest measured wavelength, in g-band, is 2sigma larger than in the other bands. The uncertainties in the Ks and Kc bands are large, due to systematic features in the light curves. The tentative increase in the planet-to-star size ratio at the shortest wavelength could be a sign of an increase in the effective planet-size due to Rayleigh scattering, which would require GJ1214b to have a hydrogen-rich atmosphere. If true, then the atmosphere has to have both clouds, to suppress planet-size variations at red optical wavelengths, as well as a sub-solar metallicity, to suppress strong molecular features in the near- and mid-infrared However, star spots, which are known to be present on the hoststar's surface, can (partly) cancel out the expected variations in planet-to-star size ratio, because the lower surface temperature of the spots causes the effective size of the star to vary with wavelength. A hypothetical spot-fraction of 10%, corresponding to an average stellar dimming of 5% in the i-band, would be able to raise the near- and mid-infrared points sufficiently with respect to the optical measurements to be inconsistent with a water-dominated atmosphere. Modulation of the spot fraction due to the stellar rotation would in such case cause the observed flux variations of GJ1214.