- ID:
- ivo://CDS.VizieR/J/A+A/559/A132
- Title:
- AKARI NEP Deep Survey revised catalog
- Short Name:
- J/A+A/559/A132
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- This is the revised catalogue of the AKARI North Ecliptic Pole Deep survey. The survey was carried out with the InfraRed Camera (IRC) onboard AKARI which has a comprehensive mid-IR wavelength coverage in nine photometric bands at 2-24 micron. For mid-IR source extraction we used a detection image while for near-IR source detection we used optical to near-IR ground-based catalogue which is based on CFHT/MegaCam z', CFHT/WIRCam Ks and Subaru/Scam z' band detection. Here we present an AKARI source with the identification from the ground-based catalogue. For objects with multiple counterparts, all of these were listed in the catalogue with an upper limit for the AKARI flux. The magnitudes are given in the AB system.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJS/214/20
- Title:
- AKARI NEP field J- and H- band source catalog
- Short Name:
- J/ApJS/214/20
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the J- and H-band source catalog covering the AKARI North Ecliptic Pole field. Filling the gap between the optical data from other follow-up observations and mid-infrared (MIR) data from AKARI, our near-infrared (NIR) data provides contiguous wavelength coverage from optical to MIR. For the J- and H-band imaging, we used the FLoridA Multi-object Imaging Near-ir Grism Observational Spectrometer on the Kitt Peak National Observatory 2.1m telescope covering a 5.1deg^2^ area down to a 5{sigma} depth of ~21.6mag and ~21.3mag (AB) for the J and H bands with an astrometric accuracy of 0.14" and 0.17" for 1{sigma} in R.A. and decl. directions, respectively. We detected 208020 sources for the J band and 203832 sources for the H band. This NIR data is being used for studies including the analysis of the physical properties of infrared sources such as stellar mass and photometric redshifts, and will be a valuable data set for various future missions.
- ID:
- ivo://CDS.VizieR/J/MNRAS/394/375
- Title:
- AKARI photometric redshift accuracy
- Short Name:
- J/MNRAS/394/375
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We investigate the photometric redshift accuracy achievable with the AKARI infrared data in deep multiband surveys, such as in the North Ecliptic Pole field. We demonstrate that the passage of redshifted polycyclic aromatic hydrocarbons (PAH) and silicate features into the mid-infrared wavelength window covered by AKARI is a valuable means to recover the redshifts of starburst galaxies. To this end, we have collected a sample of ~60 galaxies drawn from the Great Observatories Origins Deep Survey-North Field with spectroscopic redshift 0.5<~zspec<~1.5 and photometry from 3.6 to 24um, provided by the Spitzer, Infrared Space Observatory and AKARI satellites. The infrared spectra are fitted using synthetic galaxy spectral energy distributions which account for starburst and active nuclei emission. For ~90 per cent of the sources in our sample, the redshift is recovered with an accuracy |zphot-zspec|/(1+zspec)~<10%. A similar analysis performed on a set of simulated spectra shows that the AKARI infrared data alone can provide photometric redshifts accurate to |zphot-zspec|/(1+zspec)~10% (1sigma) at z~<2 . At higher redshifts, the PAH features are shifted outside the wavelength range covered by AKARI and the photo-z estimates rely on the less prominent 1.6um stellar bump; the accuracy achievable in this case on (1+z) is ~10-15%, provided that the active galactic nuclei contribution to the infrared emission is subdominant. Our technique is no more prone to redshift aliasing than optical-ultraviolet photo-z, and it may be possible to reduce this aliasing further with the addition of submillimetre and/or radio data.
- ID:
- ivo://CDS.VizieR/J/MNRAS/474/5363
- Title:
- AKARI-SDSS-6dFGS-2MRS galaxy sample
- Short Name:
- J/MNRAS/474/5363
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Local infrared (IR) luminosity functions (LFs) are necessary benchmarks for high-redshift IR galaxy evolution studies. Any accurate IR LF evolution studies require accordingly accurate local IR LFs. We present IR galaxy LFs at redshifts of z<=0.3 from AKARI space telescope, which performed an all-sky survey in six IR bands (9, 18, 65, 90, 140, and 160um) with 10 times better sensitivity than its precursor Infrared Astronomical Satellite. Availability of 160um filter is critically important in accurately measuring total IR luminosity of galaxies, covering across the peak of the dust emission. By combining data from Wide-field Infrared Survey Explorer (WISE), Sloan Digital Sky Survey (SDSS) Data Release 13 (DR 13), six-degree Field Galaxy Survey and the 2MASS Redshift Survey, we created a sample of 15638 local IR galaxies with spectroscopic redshifts, factor of 7 larger compared to previously studied AKARI-SDSS sample. After carefully correcting for volume effects in both IR and optical, the obtained IR LFs agree well with previous studies, but comes with much smaller errors. Measured local IR luminosity density is {OMEGA}_IR_=1.19+/-0.05x10^8^L_{sun}_/Mpc^3^. The contributions from luminous IR galaxies and ultraluminous IR galaxies to {OMEGA}_IR_ are very small, 9.3 per cent and 0.9 per cent, respectively. There exists no future all-sky survey in far-IR wavelengths in the foreseeable future. The IR LFs obtained in this work will therefore remain an important benchmark for high-redshift studies for decades.
- ID:
- ivo://CDS.VizieR/J/ApJS/183/295
- Title:
- A K-selected catalog of the ECDFS from MUSYC
- Short Name:
- J/ApJS/183/295
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a new, K-selected, optical-to-near infrared photometric catalog of the Extended Chandra Deep Field South (ECDFS), making it publicly available to the astronomical community. The data set is founded on publicly available imaging, supplemented by original z'JK imaging data collected as part of the MUltiwavelength Survey by Yale-Chile (MUSYC). The final photometric catalog consists of photometry derived from UU_38_BVRIz'JK imaging covering the full 1/2x1/2{deg} of the ECDFS, plus H-band photometry for approximately 80% of the field. The 5{sigma} flux limit for point sources is K^(AB)^_tot_=22.0. This is also the nominal completeness and reliability limit of the catalog: the empirical completeness for 21.75<K<22.00 is >~85%. We have verified the quality of the catalog through both internal consistency checks, and comparisons to other existing and publicly available catalogs. As well as the photometric catalog, we also present catalogs of photometric redshifts and rest-frame photometry derived from the 10-band photometry. We have collected robust spectroscopic redshift determinations from published sources for 1966 galaxies in the catalog. Based on these sources, we have achieved a (1{sigma}) photometric redshift accuracy of {Delta}z/(1+z)=0.036, with an outlier fraction of 7.8%. Most of these outliers are X-ray sources. Finally, we describe and release a utility for interpolating rest-frame photometry from observed spectral energy distributions, dubbed InterRest available via http://www.strw.leidenuniv.nl/~ent/InterRest
- ID:
- ivo://CDS.VizieR/J/AJ/145/149
- Title:
- ALFALFA discovery of Leo P. II. BVR photometry
- Short Name:
- J/AJ/145/149
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present results from ground-based optical imaging of a low-mass dwarf galaxy discovered by the ALFALFA 21cm HI survey. Broadband (BVR) data obtained with the WIYN 3.5m telescope at Kitt Peak National Observatory (KPNO) are used to construct color-magnitude diagrams of the galaxy's stellar population down to V_o_~25. We also use narrowband H{alpha} imaging from the KPNO 2.1m telescope to identify a HII region in the galaxy. We use these data to constrain the distance to the galaxy to be between 1.5 and 2.0Mpc. This places Leo P within the Local Volume but beyond the Local Group. Its properties are extreme: it is the lowest-mass system known that contains significant amounts of gas and is currently forming stars.
- ID:
- ivo://CDS.VizieR/J/AJ/146/145
- Title:
- ALFALFA discovery of Leo P. IV. VI photometry
- Short Name:
- J/AJ/146/145
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Leo P is a low-luminosity dwarf galaxy discovered through the blind HI Arecibo Legacy Fast ALFA survey. The HI and follow-up optical observations have shown that Leo P is a gas-rich dwarf galaxy with both active star formation and an underlying older population, as well as an extremely low oxygen abundance. Here, we measure the distance to Leo P by applying the tip of the red giant branch (TRGB) distance method to photometry of the resolved stellar population from new Large Binocular Telescope V and I band imaging. We measure a distance modulus of 26.19^+0.17^_-0.50_mag corresponding to a distance of 1.72^+0.14^_0.40_Mpc. Although our photometry reaches 3mag below the TRGB, the sparseness of the red giant branch yields higher uncertainties on the lower limit of the distance. Leo P is outside the Local Group with a distance and velocity consistent with the local Hubble flow. While located in a very low-density environment, Leo P lies within ~0.5Mpc of a loose association of dwarf galaxies which include NGC 3109, Antlia, Sextans A, and Sextans B, and 1.1Mpc away from its next nearest neighbor, Leo A. Leo P is one of the lowest metallicity star-forming galaxies known in the nearby universe, comparable in metallicity to I Zw 18 and DDO 68, but with stellar characteristics similar to dwarf spheriodals (dSphs) in the Local Volume such as Carina, Sextans, and Leo II. Given its physical properties and isolation, Leo P may provide an evolutionary link between gas-rich dwarf irregular galaxies and dSphs that have fallen into a Local Group environment and been stripped of their gas.
- ID:
- ivo://CDS.VizieR/J/AJ/147/145
- Title:
- Algol-type binaries. VIII. DI Peg & AF Gem
- Short Name:
- J/AJ/147/145
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- New extensive photometry for two triple binary stars, DI Peg and AF Gem, was performed from 2012 October to 2013 January, with two small telescopes at Xinglong station (XLs) of NAOC. From new multi-color observations and previously published ones in literature, the photometric models were (re)deduced using the updated Wilson-Devinney code. The results indicated that the low third lights exist in two classic Algol-type binaries, whose fill-out factors for the more massive components are f_p_=78.2(+/-0.4)% for DI Peg, and f_p_=69.0(+/-0.3)% for AF Gem, respectively. Through analyzing the O-C curves, the orbital periods for two binaries change in the complicated mode. The period of DI Peg possibly appears to show two light-time orbits, whose modulated periods are P_3_=54.6(+/-0.5)yr and P_4_=23.0(+/-0.6)yr, respectively. The inferred minimum masses for the inner and outer sub-stellar companions are M_in_=0.095M_{sun}_ and M_out_=0.170M_{sun}_, respectively. Therefore, DI Peg may be a quadruple star. The orbital period of AF Gem appears to show a continuous period decrease or a cyclic variation; the latter may be preferable. The cyclic oscillation, with a period of 120.3(+/-2.5)yr, may be attributed to the light-time effect due to the third body. This kind of additional companion may extract angular momentum from the central system, which may play a key role in the evolution of the binary.
- ID:
- ivo://CDS.VizieR/J/ApJ/742/112
- Title:
- All quiescent magnitudes for CI Aql and U Sco
- Short Name:
- J/ApJ/742/112
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- I report on the cumulative results from a program started 24 years ago designed to measure the orbital period change of recurrent novae (RNe) across an eruption. The goal is to use the orbital period change to measure the mass ejected during each eruption as the key part of trying to measure whether the RNe white dwarfs are gaining or losing mass over an entire eruption cycle, and hence whether they can be progenitors for Type Ia supernovae. This program has now been completed for two eclipsing RNe: CI Aquilae (CI Aql) across its eruption in 2000 and U Scorpii (U Sco) across its eruption in 1999. For CI Aql, I present 78 eclipse times from 1991 to 2009 (including four during the tail of the 2000 eruption) plus two eclipses from 1926 and 1935. For U Sco, I present 67 eclipse times, including 46 times during quiescence from 1989 to 2009, plus 21 eclipse times in the tails of the 1945, 1999, and 2010 eruptions. The eclipse times during the tails of eruptions are systematically and substantially shifted with respect to the ephemerides from the eclipses in quiescence, with this being caused by shifts of the center of light during the eruption. These eclipse times are plotted on an O-C diagram and fitted to models with a steady period change (dP/dt) between eruptions (caused by, for example, conservative mass transfer) plus an abrupt period change ({Delta}P) at the time of eruption. The primary uncertainty arises from the correlation between {Delta}P with dP/dt, such that a more negative dP/dt makes for a more positive {Delta}P. For CI Aql, the best fit is {Delta}P=-3.7^+9.2^_-7.3_x10^-7^. For U Sco, the best fit is {Delta}P=(+43+/-69)x10^-7^ days. These period changes can directly give a dynamical measure of the mass ejected (M_ejecta_) during each eruption with negligible sensitivity to the stellar masses and no uncertainty from distances. For CI Aql, the 1{sigma} upper limit is M_ejecta_<10x10^-7^ M_{sun}_. For U Sco, I derive M_ejecta_=(43+/-67)x10^-7^ M_{sun}_.
- ID:
- ivo://CDS.VizieR/VI/135
- Title:
- All-sky spectrally matched Tycho2 stars
- Short Name:
- VI/135
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present fitted UBVRI-ZY and u'g'r'i'z' magnitudes, spectral types, and distances for 2.4 million stars, derived from synthetic photometry of a library spectrum that best matches the Tycho2 BTVT, NOMAD RN, and 2MASS JHK2/S catalog magnitudes. We present similarly synthesized multifilter magnitudes, types, and distances for 4.8 million stars with 2MASS and SDSS photometry to g<16 within the Sloan survey region, for Landolt and Sloan primary standards, and for Sloan northern (photometric telescope) and southern secondary standards.