- ID:
- ivo://CDS.VizieR/J/A+A/421/1087
- Title:
- CO abundance of 3 globules
- Short Name:
- J/A+A/421/1087
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have studied the ratio of carbon monoxide column density to the extinction A_J_ of background field stars in the direction of three globules: B133, B335, L466. The N(CO) to A_J_ ratios were found to vary from cloud to cloud so that they are larger in B335 than in B133 and L466. These variations are thought to primarily arise from variations of the ratio N(CO)/N(H_2_).
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/481/93
- Title:
- CO and HC3N maps of IRAS 20050+2720
- Short Name:
- J/A+A/481/93
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- This is the third in a series of papers devoted to studying intermediate- mass molecular outflows and their powering sources in detail and with high -angular resolution. This paper studies the intermediate-mass YSO IRAS 20050+2720 and its molecular outflow and puts the results of this and the previous studied sources in the context of intermediate-mass star formation. We carried out VLA observations of the 7mm continuum emission and OVRO observations of the 2.7mm continuum emission, CO (1-0), C18O (1-0) and HC3N (12-11) to map the core towards IRAS 20050+2720. The high-angular resolution of the observations allowed us to derive the properties of the dust emission, the molecular outflow, and the dense protostellar envelope. By adding this source to the sample of intermediate-mass protostars with outflows, we compared their properties and evolution with those of lower mass counterparts. The 2.7mm continuum emission has been resolved into three sources, labeled OVRO 1, OVRO 2, and OVRO 3. Two of them, OVRO 1 and OVRO 2, have also been detected at 7mm. OVRO 3, which is located close to the C18O emission peak, could be associated with IRAs 20050+2720. The mass of the sources, estimated from the dust continuum emission, is 6.5M_{sun}_ for OVRO 1, 1.8M_{sun}_ for OVRO 2, and 1.3M_{sun}_ for OVRO 3. The CO (1-0) emission traces two bipolar outflows within the OVRO field of view, a roughly east-west bipolar outflow, labeled A, driven by the intermediate-mass source OVRO 1, and a northeast-southwest bipolar outflow, labeled B, probably powered by a YSO engulfed in the circumstellar envelope surrounding OVRO 1. The multiplicity of sources observed towards IRAS 20050+2720 appears to be typical of intermediate-mass protostars, which form in dense clustered environments. In some cases, as for example IRAS 20050+2720, intermediate- mass protostars would start forming after a first generation of low-mass stars has completed their main accretion phase. The properties of intermediate-mass protostars and their outflows are not significantly different from those of low-mass stars. Although intermediate-mass outflows are intrinsically more energetic than those driven by low-mass YSOs, they do not show intrinsically more complex morphologies when observed at high angular resolution. Known intermediate-mass protostars do not form a homogeneous group. Some objects are likely in an earlier evolutionary stage as suggested by the infrared emission and the outflow properties.
- ID:
- ivo://CDS.VizieR/J/ApJS/236/49
- Title:
- CO and 850um obs. of Planck Galactic cold clumps
- Short Name:
- J/ApJS/236/49
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In order to understand the initial conditions and early evolution of star formation in a wide range of Galactic environments, we carried out an investigation of 64 Planck Galactic cold clumps (PGCCs) in the second quadrant of the Milky Way. Using the ^13^CO and C^18^O J=1-0 lines and 850{mu}m continuum observations, we investigated cloud fragmentation and evolution associated with star formation. We extracted 468 clumps and 117 cores from the ^13^CO line and 850{mu}m continuum maps, respectively. We made use of the Bayesian distance calculator and derived the distances of all 64 PGCCs. We found that in general, the mass-size plane follows a relation of m~r^1.67^. At a given scale, the masses of our objects are around 1/10 of that of typical Galactic massive star-forming regions. Analysis of the clump and core masses, virial parameters, densities, and mass-size relation suggests that the PGCCs in our sample have a low core formation efficiency (~3.0%), and most PGCCs are likely low-mass star-forming candidates. Statistical study indicates that the 850{mu}m cores are more turbulent, more optically thick, and denser than the ^13^CO clumps for star formation candidates, suggesting that the 850{mu}m cores are likely more appropriate future star formation candidates than the ^13^CO clumps.
- ID:
- ivo://CDS.VizieR/J/ApJ/829/93
- Title:
- CO, [CI] and [NII] lines from Herschel spectra
- Short Name:
- J/ApJ/829/93
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a catalog of all CO (J=4-3 through J=13-12), [CI], and [NII] lines available from extragalactic spectra from the Herschel SPIRE Fourier Transform Spectrometer (FTS) archive combined with observations of the low-J CO lines from the literature and from the Arizona Radio Observatory. This work examines the relationships between L_FIR_, L'_CO_, and L_CO_/L_CO,1-0_. We also present a new method for estimating probability distribution functions from marginal signal-to-noise ratio Herschel FTS spectra, which takes into account the instrumental "ringing" and the resulting highly correlated nature of the spectra. The slopes of log(L_FIR_) versus log(L'_CO_) are linear for all mid- to high-J CO lines and slightly sublinear if restricted to (ultra)luminous infrared galaxies ((U)LIRGs). The mid- to high-J CO luminosity relative to CO J=1-0 increases with increasing L_FIR_, indicating higher excitement of the molecular gas, although these ratios do not exceed ~180. For a given bin in L_FIR_, the luminosities relative to CO J=1-0 remain relatively flat from J=6-5 through J=13-12, across three orders of magnitude of L_FIR_. A single component theoretical photodissociation region (PDR) model cannot match these flat SLED shapes, although combinations of PDR models with mechanical heating added qualitatively match the shapes, indicating the need for further comprehensive modeling of the excitation processes of warm molecular gas in nearby galaxies.
- ID:
- ivo://CDS.VizieR/J/ApJ/878/44
- Title:
- ^13^CO clumps toward the Cassiopeia A supernova remnant
- Short Name:
- J/ApJ/878/44
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have conducted a large-field simultaneous survey of ^12^CO, ^13^CO, and C^18^O J=1-0 emission toward the Cassiopeia A (Cas A) supernova remnant (SNR), which covers a sky area of 3.5{deg}x3.1{deg}. The Cas giant molecular cloud (GMC) mainly consists of three individual clouds with masses on the order of 10^4^-10^5^M_{sun}_. The total mass derived from the ^13^CO emission of the GMC is 2.1x10^5^M_{sun}_ and is 9.5x10^5^M_{sun}_ from the ^12^CO emission. Two regions with broadened (6-7km/s) or asymmetric ^12^CO line profiles are found in the vicinity (within a 10'x10' region) of the Cas A SNR, indicating possible interactions between the SNR and the GMC. Using the GAUSSCLUMPS algorithm, 547 ^13^CO clumps are identified in the GMC, 54% of which are supercritical (i.e., {alpha}_vir_<2). The mass spectrum of the molecular clumps follows a power-law distribution with an exponent of -2.20. The pixel-by-pixel column density of the GMC can be fitted with a log-normal probability distribution function (N-PDF). The median column density of molecular hydrogen in the GMC is 1.6x10^21^cm^-2^ and half the mass of the GMC is contained in regions with H_2_ column density lower than 3x10^21^cm^-2^, which is well below the threshold of star formation. The distribution of the YSO candidates in the region shows no agglomeration.
- ID:
- ivo://CDS.VizieR/J/ApJ/686/384
- Title:
- ^12^CO, ^13^CO, C^18^O survey of IRDCs
- Short Name:
- J/ApJ/686/384
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Infrared dark clouds (IRDCs) are extinction features against the Galactic infrared background, mainly in the mid-infrared band. Recently they were proposed to be potential sites of massive star formation. In this work we have made a ^12^CO, ^13^CO, and C^18^O (J=1->0) survey of 61 IRDCs, 52 of which are in the first Galactic quadrant, selected from a catalog given by Simon and coworkers (2006, Cat. J/ApJ/639/227), while the others are in the outer Galaxy, selected by visually inspecting the Midcourse Space Experiment (MSX) images. Detection rates in the three CO lines are 90%, 71%, and 62%, respectively. The distribution of IRDCs in the first Galactic quadrant is consistent with the 5kpc molecular ring picture, while a slight trace of a spiral pattern is also noticeable, and needs to be further examined. The IRDCs have a typical excitation temperature of 10K and typical column density of several 10^22^cm^-2^. Their typical physical size is estimated to be several parsecs using angular sizes from the Simon catalog.
- ID:
- ivo://CDS.VizieR/J/ApJ/720/259
- Title:
- CO column densities in dark clouds
- Short Name:
- J/ApJ/720/259
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Data from the Five College Radio Astronomy Observatory CO Mapping Survey of the Taurus molecular cloud are combined with extinction data for a sample of 292 background field stars to investigate the uptake of CO from the gas to icy grain mantles on dust within the cloud. On the assumption that the reservoir of CO in the ices is represented well by the combined abundances of solid CO and solid CO_2_ (which forms by oxidation of CO on the dust), we find that the total column density (gas+solid) correlates tightly with visual extinction (A_V_) over the range 5mag<A_V_<30mag, i.e., up to the highest extinctions covered by our sample. The mean depletion of gas-phase CO, expressed as {delta}(CO)=N(CO)_ice_/N(CO)_total_, increases monotonically from negligible levels for A_V_<~5 to ~0.3 at A_V_=10 and ~0.6 at A_V_=30. As these results refer to line-of-sight averages, they must be considered lower limits to the actual depletion at loci deep within the cloud, which may approach unity. We show that it is plausible for such high levels of depletion to be reached in dense cores on timescales ~0.6Myr, comparable with their expected lifetimes. Dispersal of cores during star formation may be effective in maintaining observable levels of gaseous CO on the longer timescales estimated for the age of the cloud.
- ID:
- ivo://CDS.VizieR/J/A+A/430/549
- Title:
- C^18^O/C^17^O near rho Oph
- Short Name:
- J/A+A/430/549
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Observations of up to ten carbon monoxide (CO and isotopomers) transitions are presented to study the interstellar C^18^O/C^17^O ratio towards 21 positions in the nearby (d~140pc) low-mass star forming cloud {rho} Oph. A map of the C^18^O J=1-0 distribution of parts of the cloud is also shown.
- ID:
- ivo://CDS.VizieR/J/ApJS/219/28
- Title:
- C^18^O/C^17^O ratios in the Galactic center
- Short Name:
- J/ApJS/219/28
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The ^18^O/^17^O isotopic ratio of oxygen is a crucial measure of the secular enrichment of the interstellar medium by ejecta from high-mass versus intermediate-mass stars. So far, however, there is a lack of data, particularly from the Galactic center (GC) region. Therefore, we have mapped typical molecular clouds in this region in the J=1-0 lines of C^18^O and C^17^O with the Delingha 13.7m telescope (DLH). Complementary pointed observations toward selected positions throughout the GC region were obtained with the IRAM 30m and Mopra 22m telescopes. C^18^O/C^17^O abundance ratios reflecting the ^18^O/^17^O isotope ratios were obtained from integrated intensity ratios of C^18^O and C^17^O. For the first time, C^18^O/C^17^O abundance ratios are determined for Sgr C (V~-58km/s), Sgr D (V~80km/s), and the 1.3{deg} complex (V~80km/s). Through our mapping observations, abundance ratios are also obtained for Sgr A (~0 and ~50km/s component) and Sgr B2 (~60km/s), which are consistent with the results from previous single-point observations. Our frequency-corrected abundance ratios of the GC clouds range from 2.58+/-0.07 (Sgr D, V~80km/s, DLH) to 3.54+/-0.12 (Sgr A, ~50km/s). In addition, strong narrow components (line width less than 5km/s) from the foreground clouds are detected toward Sgr D (-18km/s), the 1.3{deg} complex (-18km/s), and M+5.3-0.3 (22km/s), with a larger abundance ratio around 4.0. Our results show a clear trend of lower C^18^O/C^17^O abundance ratios toward the GC region relative to molecular clouds in the Galactic disk. Furthermore, even inside the GC region, ratios appear not to be uniform. The low GC values are consistent with an inside-out formation scenario for our Galaxy.
- ID:
- ivo://CDS.VizieR/J/PASJ/73/487
- Title:
- C18O cores in Orion A
- Short Name:
- J/PASJ/73/487
- Date:
- 19 Jan 2022 00:24:20
- Publisher:
- CDS
- Description:
- We have performed an unbiased dense core survey toward the Orion A Giant Molecular Cloud in the C^18^O (J=1-0) emission line taken with the Nobeyama Radio Observatory (NRO) 45 m telescope. The effective angular resolution of the map is 26", which corresponds to ~0.05pc at a distance of 414pc. By using the Herschel-Planck H_2_ column density map, we calculate the C^18^O fractional abundance and find that it is roughly constant over the column density range of <~5x10^22^cm^-3^, although a trend of C^18^O depletion is determined toward higher column density. Therefore, C^18^O intensity can follow the cloud structure reasonably well. The mean C^18^O abundance in Orion A is estimated to be 5.7x10^-7^, which is about three times larger than the fiducial value. We identified 746 C^18^O cores with astrodendro and classified 709 cores as starless cores. We compute the core masses by decomposing the Herschel-Planck dust column density using the relative proportions of the C^18^O integrated intensities of line-of-sight components. Applying this procedure, we attempt to remove the contribution of the background emission, i.e., the ambient gas outside the cores. Then, we derived mass function for starless cores and found that it resembles the stellar initial mass function (IMF). The CMF for starless cores, dN/dM, is fitted with a power-law relation of M^{alpha}^ with a power index of {alpha}=-2.25+/-0.16 at the high-mass slope (>~0.44M_{sun}_). We also found that the ratio of each core mass to the total mass integrated along the line of sight is significantly large. Therefore, in the previous studies, the core masses derived from the dust image are likely to be overestimated by at least a factor of a few. Accordingly, such previous studies may underestimate the star formation efficiency of individual cores.