- ID:
- ivo://CDS.VizieR/J/ApJS/224/43
- Title:
- Planck cold clumps and cores in the 2nd quadrant
- Short Name:
- J/ApJS/224/43
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Ninety-six Planck cold dust clumps in the second quadrant were mapped with ^12^CO(1-0), ^13^CO(1-0), and C^18^O(1-0) lines at the 13.7m telescope of Purple Mountain Observatory. ^12^CO(1-0) and ^13^CO(1-0) emissions were detected for all 96 clumps, while C^18^O(1-0) emissions were detected in 81 of them. Fifteen clumps have more than one velocity component. In the 115 mapped velocity components, 225 cores were obtained. We found that 23.1% of the cores have non-Gaussian profiles. We acquired the V_lsr_, FWHM, and T_A_ of the lines. Distances, T_ex_, velocity dispersions, N_H_2__, and masses were also derived. Generally, turbulence may dominant the cores because {sigma}_NT_/{sigma}_Therm_>1 in almost all of the cores and Larson's relationship is not apparent in our massive cores. Virial parameters are adopted to test the gravitational stability of cores and 51% of the cores are likely collapsing. The core mass function of the cores in the range 0-1kpc suggests a low core-to-star conversional efficiency (0.62%). Only 14 of 225 cores (6.2%) have associated stellar objects at their centers, while the others are starless. The morphologies of clumps are mainly filamentary structures. Seven clumps may be located on an extension of the new spiral arm in the second quadrant while three are on the known outer arm.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJS/209/37
- Title:
- Planck cold clumps in ^12^CO, ^13^CO and C^18^O
- Short Name:
- J/ApJS/209/37
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- A mapping study of 71 Planck cold clumps was made with ^12^CO(1-0), ^13^CO(1-0), and C^18^O(1-0) lines at the 13.7m telescope of Purple Mountain Observatory. For all the clumps, ^12^CO(1-0) and ^13^CO(1-0) emissions were detected, while for 55 of them, C^18^O(1-0) emissions were detected. Of the 71 Clumps, 34 are in the Taurus Complex, 24 in the California Complex, and 13 are in the Perseus Complex. In the 76 velocity components, 38 cores are found in 27 clumps; 19 of these cores are in the Taurus Complex, 16 in the California Complex, and 3 in the Perseus Complex. We acquired V_lsr_, T_A_ and FWHM of lines. Physical parameters including T_ex_, N_H2_, {sigma}_Therm_, {sigma}_NT_, and {sigma}_3D_were calculated. Generally, the cores are of T_ex_=2-16K, N_H2_/cm2, and {sigma}_3D_=0.2-1.0km/s. In the Taurus Complex, the cores are less dense on average and have smaller {sigma}_Therm_than the cores in the Perseus and California Complexes. Two of the three cores in the Perseus Complex are revealed to have larger T_ex_, N_H2_, and {sigma}_3D_ than the mean values in the other two regions. Most of the cores have {sigma}_NT_larger than {sigma}_Therm_, suggesting a dominance of turbulence in our cores. The majority of the cores have M_vir_/M_LTE_{Gt} 1, which indicates these cores are not bound and will disperse. By comparing our results with the dust properties revealed by the Planck Early Release Cold Cores Catalog, we investigated the coupling of gas and dust components. We found that most of the cores have dust temperatures higher than their gas temperatures. The stellar objects associated with our sources were checked and 90% of the cores were found to be starless.
- ID:
- ivo://CDS.VizieR/J/ApJS/254/14
- Title:
- Planck Cold Clumps in the lambda Orionis complex. III.
- Short Name:
- J/ApJS/254/14
- Date:
- 17 Jan 2022 00:15:36
- Publisher:
- CDS
- Description:
- Massive stars have a strong impact on their local environments. However, how stellar feedback regulates star formation is still under debate. In this context, we studied the chemical properties of 80 dense cores in the Orion molecular cloud complex composed of the Orion A (39 cores), B (26 cores), and {lambda} Orionis (15 cores) clouds using multiple molecular line data taken with the Korean Very Long Baseline Interferometry Network 21m telescopes. The {lambda} Orionis cloud has an HII bubble surrounding the O-type star {lambda} Ori, and hence it is exposed to the ultraviolet (UV) radiation field of the massive star. The abundances of C_2_H and HCN, which are sensitive to UV radiation, appear to be higher in the cores in the {lambda} Orionis cloud than in those in the Orion A and B clouds, while the HDCO to H_2_CO abundance ratios show the opposite trend, indicating warmer conditions in the {lambda} Orionis cloud. The detection rates of dense gas tracers such as the N_2_H^+^, HCO^+^, and H^13^CO^+^ lines are also lower in the {lambda} Orionis cloud. These chemical properties imply that the cores in the {lambda} Orionis cloud are heated by UV photons from {lambda} Ori. Furthermore, the cores in the {lambda} Orionis cloud do not show any statistically significant excess in the infall signature of HCO^+^ (1-0), unlike those in the Orion A and B clouds. Our results support the idea that feedback from massive stars impacts star formation in a negative way by heating and evaporating dense materials, as in the {lambda} Orionis cloud.
- ID:
- ivo://CDS.VizieR/J/ApJS/202/4
- Title:
- Planck cold clumps survey in the Orion complex
- Short Name:
- J/ApJS/202/4
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- A mapping survey of 51 Planck cold clumps projected on the Orion complex was performed with J=1-0 lines of ^12^CO and ^13^CO with the 13.7m telescope at the Purple Mountain Observatory. The mean column densities of the Planck gas clumps range from 0.5 to 9.5x10^21^cm^-2^, with an average value of (2.9+/-1.9)x10^21^cm^-2^. The mean excitation temperatures of these clumps range from 7.4 to 21.1K, with an average value of 12.1+/-3.0K and the average three-dimensional velocity dispersion {sigma}_3D_ in these molecular clumps is 0.66+/-0.24km/s. The H2 column density of the molecular clumps calculated from molecular lines correlates with the aperture flux at 857GHz of the dust emission. By analyzing the distributions of the physical parameters, we suggest that turbulent flows can shape the clump structure and dominate their density distribution on large scales, but not function on small scales due to local fluctuations. Eighty-two dense cores are identified in the molecular clumps. The dense cores have an average radius and local thermal equilibrium (LTE) mass of 0.34+/-0.14pc and 38^+5^_-30_M_{sun}_, respectively. The structures of low column density cores are more affected by turbulence, while the structures of high column density cores are more affected by other factors, especially by gravity.
- ID:
- ivo://CDS.VizieR/J/ApJ/756/76
- Title:
- Planck cold dust clumps CO survey
- Short Name:
- J/ApJ/756/76
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- A survey toward 674 Planck cold clumps of the Early Cold Core Catalogue (ECC) in the J=1-0 transitions of ^12^CO, ^13^CO, and C^18^O has been carried out using the Purple Mountain Observatory 13.7m telescope. Six hundred seventy-three clumps were detected with ^12^CO and ^13^CO emission, and 68% of the sample has C^18^O emission. Additional velocity components were also identified. A close consistency of the three line peak velocities was revealed for the first time. Kinematic distances are given for all the velocity components, and half of the clumps are located within 0.5 and 1.5kpc. Excitation temperatures range from 4 to 27K, slightly larger than those of T_d_. Line width analysis shows that the majority of ECC clumps are low-mass clumps. Ten clumps were mapped. Twelve velocity components and 22 cores were obtained. Their morphologies include extended diffuse, dense, isolated, cometary, and filament, of which the last is the majority. Twenty cores are starless, and only seven cores seem to be in a gravitationally bound state. Planck cold clumps are the most quiescent among the samples of weak red IRAS, infrared dark clouds, UC HII candidates, extended green objects, and methanol maser sources, suggesting that Planck cold clumps have expanded the horizon of cold astronomy.
- ID:
- ivo://CDS.VizieR/J/A+A/592/A103
- Title:
- Planetary nebulae monochromatic images atlas
- Short Name:
- J/A+A/592/A103
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present an atlas of more than one hundred original images of planetary nebulae (PNe). These images were taken in a narrow-band filter centred on the nebular emission of the [NII] during several observing campaigns using two moderate-aperture telescopes, at the Complejo Astronomico El Leoncito (CASLEO), and the Estacion Astrofisica de Bosque Alegre (EABA), both in Argentina. The data provided by this atlas represent one of the most extensive image surveys of PNe in [NII]. We compare the new images with those available in the literature, and briefly describe all cases in which our [NII] images reveal new and interesting structures.
- ID:
- ivo://CDS.VizieR/J/A+A/654/A93
- Title:
- Polar dust obscuration in broad-line AGN
- Short Name:
- J/A+A/654/A93
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- We study a sample of 1275 broad-line AGN in the XMM-XXL field, with optical to infrared photometric data. These AGN are seen along their polar direction and we expect a maximal impact of dust located around the poles when it is present. We use X-CIGALE, which introduces a dust component to account for obscuration along the polar directions, modeled as a foreground screen, and an extinction curve that is chosen as it steepens significantly at short wavelengths or is much grayer. By comparing the results of different fits, we are able to define subsamples of sources with positive statistical evidence in favor of or against polar obscuration (if present) and described using the gray or steep extinction curve. We find a similar fraction of sources with positive evidence for and against polar dust. Applying statistical corrections, we estimate that half of our sample could contain polar dust and among them, 60% exhibit a steep extinction curve and 40% a flat extinction curve; although these latter percentages are found to depend on the adopted extinction curves. The obscuration in the V-band is not found to correlate with the X-ray column density, while A_V_/N_H_ ratios span a large range of values and higher dust temperatures are found with the flat, rather than with the steep extinction curve. Ignoring this polar dust component in the fit of the spectral energy distribution of these composite systems leads to an overestimation of the stellar contribution. A single fit with a polar dust component described with an SMC extinction curve efficiently overcomes this issue but it fails at identifying all the AGN with polar dust obscuration.
- ID:
- ivo://CDS.VizieR/J/ApJ/849/157
- Title:
- Polarimetry obs. toward IC5146 background stars
- Short Name:
- J/ApJ/849/157
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present optical and near-infrared stellar polarization observations toward the dark filamentary clouds associated with IC5146. The data allow us to investigate the dust properties (this paper) and the magnetic field structure (Paper II). A total of 2022 background stars were detected in the Rc, i', H, and/or K bands to A_V_<~25mag. The ratio of the polarization percentage at different wavelengths provides an estimate of {lambda}_max_, the wavelength of the peak polarization, which is an indicator of the small-size cutoff of the grain size distribution. The grain size distribution seems to significantly change at A_V_~3mag, where both the average and dispersion of P_Rc_/P_H_ decrease. In addition, we found {lambda}_max_~0.6-0.9{mu}m for A_V_>2.5mag, which is larger than the ~0.55{mu}m in the general interstellar medium (ISM), suggesting that grain growth has already started in low-AV regions. Our data also reveal that polarization efficiency (PE=P_{lambda}_/A_V_) decreases with A_V_ as a power law in the Rc, i', and K bands with indices of -0.71+/-0.10, -1.23+/-0.10, and -0.53+/-0.09. However, H-band data show a power index change; the PE varies with A_V_ steeply (index of -0.95+/-0.30) when A_V_<2.88+/-0.67mag, but softly (index of -0.25+/-0.06) for greater AV values. The soft decay of PE in high-AV regions is consistent with the radiative alignment torque model, suggesting that our data trace the magnetic field to A_V_~20mag. Furthermore, the breakpoint found in the H band is similar to that for A_V_, where we found the P_Rc_/P_H_ dispersion significantly decreased. Therefore, the flat PE-A_V_ in high-A_V_ regions implies that the power-index changes result from additional grain growth.
- ID:
- ivo://CDS.VizieR/J/ApJ/698/2031
- Title:
- Polarimetry of HAeBe stars
- Short Name:
- J/ApJ/698/2031
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a study of the correlation between the direction of the symmetry axis of the circumstellar material around intermediate mass young stellar objects and that of the interstellar magnetic field. We use CCD polarimetric data on 100 Herbig Ae/Be stars. A large number of them show intrinsic polarization, which indicates that their circumstellar envelopes are not spherical. The interstellar magnetic field direction is estimated from the polarization of field stars. There is an alignment between the position angle of the Herbig Ae/Be star polarization and that of the field stars for the most polarized objects. This may be an evidence that the ambient interstellar magnetic field plays a role in shaping the circumstellar material around young stars of intermediate mass and/or in defining their angular momentum axis.
- ID:
- ivo://CDS.VizieR/J/ApJ/720/1045
- Title:
- Polarimetry toward sightlines through ChaI
- Short Name:
- J/ApJ/720/1045
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have obtained optical multi-band polarimetry toward sightlines through the Chamaeleon I cloud, particularly in the vicinity of the young B9/A0 star HD 97300. We show, in agreement with earlier studies, that the radiation field impinging on the cloud in the projected vicinity of the star is dominated by the flux from the star, as evidenced by a local enhancement in the grain heating. By comparing the differential grain heating with the differential change in the location of the peak of the polarization curve, we show that the grain alignment is enhanced by the increase in the radiation field. We also find a weak, but measurable, variation in the grain alignment with the relative angle between the radiation field anisotropy and the magnetic field direction. Such an anisotropy in the grain alignment is consistent with a unique prediction of modern radiative alignment torque theory and provides direct support for radiatively driven grain alignment.