- ID:
- ivo://CDS.VizieR/J/ApJ/702/1472
- Title:
- Column densities for HI, AlIII, SiIV, CIV, OVI
- Short Name:
- J/ApJ/702/1472
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Column densities for HI, AlIII, SiIV, CIV, and OVI toward 109 stars and 30 extragalactic objects have been assembled to study the extensions of these species away from the Galactic plane into the Galactic halo. HI and AlIII mostly trace the warm neutral and warm ionized medium, respectively, while SiIV, CIV, and OVI trace a combination of warm photoionized and collisionally ionized plasmas. The much larger object sample compared to previous studies allows us to consider and correct for the effects of the sample bias that has affected earlier but smaller surveys of the gas distributions. The observations are compared to the predictions of the various models for the production of the transition temperature gas in the halo.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/894/142
- Title:
- Column densities from HST/COS SiIV AGN sight lines
- Short Name:
- J/ApJ/894/142
- Date:
- 19 Jan 2022 13:10:08
- Publisher:
- CDS
- Description:
- We develop a kinematical model for the Milky Way SiIV-bearing gas to determine its density distribution and kinematics. This model is constrained by a column density line-shape sample extracted from the Hubble Space Telescope/Cosmic Origins Spectrograph archival data, which contains 186 active galactic nucleus sight lines. We find that the SiIV ion density distribution is dominated by an extended disk along the z-direction (above or below the midplane), i.e., n(z)=n_0_exp(-(z/z_0_)^0.82^), where z_0_ is the scale height of 6.3_-1.5_^+1.6^kpc (northern hemisphere) and 3.6_-0.9_^+1.0^kpc (southern hemisphere). The density distribution of the disk in the radial direction shows a sharp edge at 15-20kpc given by, n(r_XY_)=n_0_exp(-(r_XY_/r_0_)^3.36^), where r_0_~12.5+/-0.6kpc. The difference of density distributions over r_XY_ and z directions indicates that the warm gas traced by SiIV is mainly associated with disk processes (e.g., feedback or cycling gas) rather than accretion. We estimate the mass of the warm gas (within 50kpc) is log(M(50kpc)/M_{sun}_)~8.1 (assuming Z~0.5Z_{sun}_), and a 3{sigma} upper limit of log(M(250kpc)/M_{sun}_)~9.1 (excluding the Magellanic system). Kinematically, the warm gas disk is nearly co-rotating with the stellar disk at v_rot_=215+/-3km/s, which lags the midplane rotation by about 8km/s/kpc (within 5kpc). Meanwhile, we note that the warm gas in the northern hemisphere has significant accretion with vacc of 69+/-7km/s at 10kpc (an accretion rate of -0.60_-0.13_^+0.11^M_{sun}_/yr), while in the southern hemisphere, there is no measurable accretion, with an upper limit of 0.4M_{sun}_/yr.
- ID:
- ivo://CDS.VizieR/J/ApJ/722/395
- Title:
- Compact H I clouds from the GALFA-H I survey
- Short Name:
- J/ApJ/722/395
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Galactic Arecibo L-band Feed Array H I (GALFA-H I) survey is mapping the entire Arecibo sky at 21 cm, over a velocity range of -700 to +700 km/s (LSR), at a velocity resolution of 0.18 km/s, and a spatial resolution of 3.5 arcmin. The unprecedented resolution and sensitivity of the GALFA-H I survey have resulted in the detection of numerous isolated, very compact H I clouds at low Galactic velocities, which are distinctly separated from the H I disk emission. In the limited area of ~4600 deg^2^ surveyed so far, we have detected 96 such compact clouds. The detected clouds are cold with a median T_k,max_ (the kinetic temperature in the case in which there is no non-thermal broadening) of 300 K. Moreover, these clouds are quite compact and faint, with median values of 5 arcmin in angular size, 0.75 K in peak brightness temperature, and 5x10^18^/cm2 in H I column density. Most of the clouds deviate from Galactic rotation at the 20-30 km/s level, and a significant fraction show evidence for a multiphase medium and velocity gradients. No counterparts for these clouds were found in other wave bands. From the modeling of spatial and velocity distributions of the whole compact cloud population, we find that the bulk of the compact clouds are related to the Galactic disk, and their distances are likely to be in the range of 0.1 to a few kpc. We discuss various possible scenarios for the formation and maintenance of this cloud population and its significance for Galactic interstellar medium studies.
- ID:
- ivo://CDS.VizieR/J/AJ/130/586
- Title:
- Compact radio sources in the galactic plane
- Short Name:
- J/AJ/130/586
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Archival data have been combined with recent observations of the Galactic plane using the Very Large Array to create new catalogs of compact centimetric radio sources. The 20cm source catalog covers a longitude range of -20{deg}<l<120{deg} the latitude coverage varies from +/-0.8{deg} to +/-2.7{deg}. The total survey area is about 331{deg}^2^; coverage is 90% complete at a flux density threshold of about 14mJy, and over 5000 sources are recorded. The 6cm catalog covers 43{deg}^2^ in the region -10{deg}<l<42{deg}, |b|<0.4{deg} to a 90% completeness threshold of 2.9mJy; over 2700 sources are found. Both surveys have an angular resolution of about 6". These catalogs provide a 30% (at 20cm) to 50% (at 6cm) increase in the number of high-reliability compact sources in the Galactic plane, as well as greatly improved astrometry, uniformity, and reliability; they should prove useful for comparison with new mid- and far-infrared surveys of the Milky Way.
- ID:
- ivo://CDS.VizieR/J/ApJ/773/67
- Title:
- Compact radio sources near the Galactic center
- Short Name:
- J/ApJ/773/67
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have observed the Galactic center (GC) region at 0.154 and 0.255GHz with the Giant Metrewave Radio Telescope. A total of 62 compact likely extragalactic (EG) sources are detected. Their scattering sizes decrease linearly with increasing angular distance from the GC up to about 1{deg}. The apparent scattering sizes of the sources are more than an order of magnitude less than predicted earlier by the NE2001 model of Galactic electron distribution within 359.5{deg}<l<0.5{deg} and -0.5{deg}<b<0.5{deg} (Hyperstrong Scattering Region) of the Galaxy. High free-free optical depths ({tau}) are observed toward most of the extended non-thermal sources within 0.6{deg} from the GC. Significant variation of {tau} indicates that the absorbing medium is patchy at an angular scale of ~10' and n_e_ is ~10/cm3, which matches the NE2001 model. This model predicts the EG sources to be resolved out from 1.4GHz interferometric surveys. However, out of 10 EG sources expected in the region, 8 likely EG are present in the 1.4GHz catalog. Ionized interfaces of dense molecular clouds to the ambient medium are most likely responsible for strong scattering and low radio frequency absorption. However, dense GC clouds traced by CS J=1-0 emission are found to have a narrow distribution of ~0.2{deg} across the Galactic plane. Angular distribution of most EG sources seen through the so-called Hyperstrong Scattering Region are random in b, and typically ~7 out of 10 sources will not be seen through the dense molecular clouds, which explains why most of them are not scatter broadened at 1.4GHz.
- ID:
- ivo://CDS.VizieR/J/ApJS/80/211
- Title:
- Compact Radio Sources Near the Galactic Plane
- Short Name:
- J/ApJS/80/211
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The results of the extension of the 20-cm Galactic-plane survey reported by Zoonematkermani to Galactic latitudes of +/-1.8{deg} over the central region of the Milky Way are reported. A total of 1457 discrete radio sources down to flux densities of less than about 5mJy, and 95% completion is achieved at 20mJy. A detailed comparison of all radio sources from the survey in this longitude range with the IRAS Point Source Catalog provides classification for 13% of the objects, including 159 compact H II regions, and nearly 100 planetary nebulae, over 70 of which are identified. The identity of the remaining radio sources is discussed.
- ID:
- ivo://CDS.VizieR/J/ApJ/809/10
- Title:
- Compact radio sources within 30" of Sgr A*
- Short Name:
- J/ApJ/809/10
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Recent broadband 34 and 44GHz radio continuum observations of the Galactic center have revealed 41 massive stars identified with near-IR (NIR) counterparts, as well as 44 proplyd candidates within 30" of SgrA*. Radio observations obtained in 2011 and 2014 have been used to derive proper motions of eight young stars near Sgr A*. The accuracy of proper motion estimates based on NIR observations by Lu et al. (2009ApJ...690.1463L) and Paumard et al. (2006, J/ApJ/643/1011) have been investigated by using their proper motions to predict the 2014 epoch positions of NIR stars and comparing the predicted positions with those of radio counterparts in the 2014 radio observations. Predicted positions from Lu et al. show an rms scatter of 6mas relative to the radio positions, while those from Paumard et al. show rms residuals of 20mas. We also determine the mass-loss rates of 11 radio stars, finding rates that are on average ~2 times smaller than those determined from model atmosphere calculations and NIR data. Clumpiness of ionized winds would reduce the mass loss rate of WR and O stars by additional factors of 3 and 10, respectively. One important implication of this is a reduction in the expected mass accretion rate onto Sgr A* from stellar winds by nearly an order of magnitude to a value of a few x10^-7^m_{sun}_/yr. Finally, we present the positions of 318 compact radio sources within 30" of Sgr A*, 45 of which have stellar counterparts in the NIR K_s_ (2.18{mu}m) and L' (3.8{mu}m) bands.
- ID:
- ivo://CDS.VizieR/J/AJ/151/85
- Title:
- Companions to APOGEE stars. I.
- Short Name:
- J/AJ/151/85
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In its three years of operation, the Sloan Digital Sky Survey Apache Point Observatory Galactic Evolution Experiment (APOGEE-1) observed >14000 stars with enough epochs over a sufficient temporal baseline for the fitting of Keplerian orbits. We present the custom orbit-fitting pipeline used to create this catalog, which includes novel quality metrics that account for the phase and velocity coverage of a fitted Keplerian orbit. With a typical radial velocity precision of ~100-200 m/s, APOGEE can probe systems with small separation companions down to a few Jupiter masses. Here we present initial results from a catalog of 382 of the most compelling stellar and substellar companion candidates detected by APOGEE, which orbit a variety of host stars in diverse Galactic environments. Of these, 376 have no previously known small separation companion. The distribution of companion candidates in this catalog shows evidence for an extremely truncated brown dwarf (BD) desert with a paucity of BD companions only for systems with a<0.1-0.2 AU, with no indication of a desert at larger orbital separation. We propose a few potential explanations of this result, some which invoke this catalog's many small separation companion candidates found orbiting evolved stars. Furthermore, 16 BD and planet candidates have been identified around metal-poor ([Fe/H]<-0.5) stars in this catalog, which may challenge the core accretion model for companions >10 M_Jup_. Finally, we find all types of companions are ubiquitous throughout the Galactic disk with candidate planetary-mass and BD companions to distances of ~6 and ~16 kpc, respectively.
- ID:
- ivo://CDS.VizieR/J/A+A/612/L2
- Title:
- Compilation of stellar rotation data
- Short Name:
- J/A+A/612/L2
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The distribution of the stellar rotation axes of 113 main sequence stars in the open cluster Praesepe are examined by using current photometric rotation periods, spectroscopic rotation velocities, and estimated stellar radii. Three different samples of stellar rotation data on spotted stars from the Galactic field and two independent samples of planetary hosts are used as control samples to support the consistency of the analysis. Considering the high completeness of the Praesepe sample and the behavior of the control samples, we find that the main sequence F-K stars in this cluster are susceptible to rotational axis alignment. Using a cone model, the most likely inclination angle is 76+/-14{deg} with a half opening angle of 47+/-24{deg}. Non-isotropic distribution of the inclination angles is preferred over the isotropic distribution, except if the rotation velocities used in this work are systematically overestimated. We found no indication of this being the case on the basis of the currently available data.
- ID:
- ivo://CDS.VizieR/J/MNRAS/473/1059
- Title:
- Complete sample of Galactic clump properties
- Short Name:
- J/MNRAS/473/1059
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The APEX Telescope Large Area Survey of the Galaxy (ATLASGAL) is an unbiased 870um submillimetre survey of the inner Galactic plane (|l|<60{deg} with |b|<1.5{deg}). It is the largest and most sensitive ground-based submillimetre wavelength Galactic survey to date and has provided a large and systematic inventory of all massive, dense clumps in the Galaxy (>=1000M_{sun}_ at a heliocentric distance of 20kpc) and includes representative samples of all of the earliest embedded stages of high-mass star formation. Here, we present the first detailed census of the properties (velocities, distances, luminosities and masses) and spatial distribution of a complete sample of ~8000 dense clumps located in the Galactic disc (5{deg}<|l|<60{deg}). We derive highly reliable velocities and distances to ~97 per cent of the sample and use mid- and far-infrared survey data to develop an evolutionary classification scheme that we apply to the whole sample. Comparing the evolutionary subsamples reveals trends for increasing dust temperatures, luminosities and linewidths as a function of evolution indicating that the feedback from the embedded protoclusters is having a significant impact on the structure and dynamics of their natal clumps. We find that the vast majority of the detected clumps are capable of forming a massive star and 88 per cent are already associated with star formation at some level. We find the clump mass to be independent of evolution suggesting that the clumps form with the majority of their mass in situ. We estimate the statistical lifetime of the quiescent stage to be ~5x10^4^yr for clump masses >1000M_{sun}_ decreasing to ~1x10^4^yr for clump masses >10000M_{sun}_. We find a strong correlation between the fraction of clumps associated with massive stars and peak column density. The fraction is initially small at low column densities, but reaching 100 per cent for column densities above 10^23^cm^x2^; there are no clumps with column densities above this value that are not already associated with massive star formation. All of the evidence is consistent with a dynamic view of star formation wherein the clumps form rapidly and are initially very unstable so that star formation quickly ensues.