- ID:
- ivo://CDS.VizieR/J/AJ/159/290
- Title:
- RVs of 12 spectroscopic binaries M-dwarfs
- Short Name:
- J/AJ/159/290
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the spectroscopic orbits of 11 nearby, mid-to-late M dwarf binary systems in a variety of configurations: 2 single-lined binaries (SB1s), 7 double-lined binaries (SB2s), 1 double-lined triple (ST2), and 1 triple-lined triple (ST3). Eight of these orbits are the first published for these systems, while five are newly identified multiples. We obtained multi-epoch, high-resolution spectra with the TRES instrument on the 1.5m Tillinghast Reflector at the Fred Lawrence Whipple Observatory located on Mt. Hopkins in AZ. Using the TiO molecular bands at 7065-7165{AA}, we calculated radial velocities for these systems, from which we derived their orbits. We find LHS 1817 to have in a 7hr period a companion that is likely a white dwarf, due to the ellipsoidal modulation we see in our MEarth-North light-curve data. We find G123-45 and LTT11586 to host companions with minimum masses of 41MJup and 44MJup with orbital periods of 35 and 15days, respectively. We find 2MA0930+0227 to have a rapidly rotating stellar companion in a 917 day orbital period. GJ268, GJ1029, LP734-34, GJ1182, G258-17, and LTT7077are SB2s with stellar companions with orbital periods of 10, 96, 34, 154, 5, and 84days; LP655-43 is an ST3 with one companion in an 18day orbital period and an outer component in a longer undetermined period. In addition, we present radial velocities for both components of L870-44AB and for the outer components of LTT11586 and LP655-43.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/AJ/155/159
- Title:
- RVs of the late-T dwarf GL 758 B host star
- Short Name:
- J/AJ/155/159
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Gl 758 B is a late-T dwarf orbiting a metal-rich Sun-like star at a projected separation of {rho}~1.6" (25 au). We present four epochs of astrometry of this system with NIRC2 at Keck Observatory spanning 2010 to 2017 together with 630 radial velocities (RVs) of the host star acquired over the past two decades from McDonald Observatory, Keck Observatory, and the Automated Planet Finder at Lick Observatory. The RVs reveal that Gl 758 is accelerating with an evolving rate that varies between 2 and 5 m/s/yr, consistent with the expected influence of the imaged companion Gl 758 B. A joint fit of the RVs and astrometry yields a dynamical mass of 42_-7_^+19^ M_Jup_ for the companion with a robust lower limit of 30.5 M_Jup_ at the 4-{sigma} level. Gl 758 B is on an eccentric orbit (e=0.26-0.67 at 95% confidence) with a semimajor axis of a=21.1_-1.3_^+2.7^ au and an orbital period of P=96_-9_^+21^ yr, which takes it within ~9 au from its host star at periastron passage. Substellar evolutionary models generally underpredict the mass of Gl 758 B for nominal ages of 1-6 Gyr that have previously been adopted for the host star. This discrepancy can be reconciled if the system is older - which is consistent with activity indicators and recent isochrone fitting of the host star - or alternatively if the models are systematically overluminous by ~0.1-0.2 dex. Gl 758 B is currently the lowest-mass directly imaged companion inducing a measured acceleration on its host star. In the future, bridging RVs and high-contrast imaging with the next generation of extremely large telescopes and space-based facilities will open the door to the first dynamical mass measurements of imaged exoplanets.
- ID:
- ivo://CDS.VizieR/J/AJ/156/89
- Title:
- RVs & predicted transit-times for the K2-24 system
- Short Name:
- J/AJ/156/89
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- While planets between the size of Uranus and Saturn are absent within the solar system, the star K2-24 hosts two such planets, K2-24b and c, with radii equal to 5.4 R_{Earth}_ and 7.5 R_{Earth}_, respectively. The two planets have orbital periods of 20.9 days and 42.4 days, residing only 1% outside the nominal 2:1 mean-motion resonance. In this work, we present results from a coordinated observing campaign to measure planet masses and eccentricities that combines radial velocity measurements from Keck/HIRES and transit-timing measurements from K2 and Spitzer. K2-24b and c have low, but nonzero, eccentricities of e_1_~e_2_~0.08. The low observed eccentricities provide clues to the formation and dynamical evolution of K2-24b and K2-24c, suggesting that they could be the result of stochastic gravitational interactions with a turbulent protoplanetary disk, among other mechanisms. K2-24b and c are 19.0_-2.1_^+2.2^ M_{Earth}_ and 15.4_-1.8_^+1.9^ M_{Earth}_, respectively; K2-24c is 20% less massive than K2-24b, despite being 40% larger. Their large sizes and low masses imply large envelope fractions, which we estimate at 26_-3_^+3^ % and 52_-3_^+5^ %. In particular, K2-24c's large envelope presents an intriguing challenge to the standard model of core-nucleated accretion that predicts the onset of runaway accretion when f_env_~50%.
- ID:
- ivo://CDS.VizieR/J/ApJ/746/36
- Title:
- RV standard deviation in the M2K survey
- Short Name:
- J/ApJ/746/36
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We constrain the densities of Earth- to Neptune-size planets around very cool (T_e_=3660-4660K) Kepler stars by comparing 1202 Keck/HIRES radial velocity measurements of 150 nearby stars to a model based on Kepler candidate planet radii and a power-law mass-radius relation. Our analysis is based on the presumption that the planet populations around the two sets of stars are the same. The model can reproduce the observed distribution of radial velocity variation over a range of parameter values, but, for the expected level of Doppler systematic error, the highest Kolmogorov-Smirnov probabilities occur for a power-law index {alpha}{approx}4, indicating that rocky-metal planets dominate the planet population in this size range. A single population of gas-rich, low-density planets with {alpha}=2 is ruled out unless our Doppler errors are >=5m/s, i.e., much larger than expected based on observations and stellar chromospheric emission. If small planets are a mix of {gamma} rocky planets ({alpha}=3.85) and 1-{gamma} gas-rich planets ({alpha}=2), then {gamma}>0.5 unless Doppler errors are >=4m/s. Our comparison also suggests that Kepler's detection efficiency relative to ideal calculations is less than unity. One possible source of incompleteness is target stars that are misclassified subgiants or giants, for which the transits of small planets would be impossible to detect. Our results are robust to systematic effects, and plausible errors in the estimated radii of Kepler stars have only moderate impact.
- ID:
- ivo://CDS.VizieR/J/MNRAS/477/2068
- Title:
- RV survey of the Carina Nebula's O stars
- Short Name:
- J/MNRAS/477/2068
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have obtained multi-epoch observations of 31 O-type stars in the Carina Nebula using the CHIRON spectrograph on the CTIO/SMARTS 1.5-m telescope. We measure their radial velocities to 1-2 km/s precision and present new or updated orbital solutions for the binary systems HD 92607, HD 93576, HDE 303312, and HDE 305536. We also compile radial velocities from the literature for 32 additional O-type and evolved massive stars in the region. The combined data set shows a mean heliocentric radial velocity of 0.6km/s. We calculate a velocity dispersion of <=9.1km/s, consistent with an unbound, substructured OB association. The Tr 14 cluster shows a marginally significant 5km/s radial velocity offset from its neighbour Tr 16, but there are otherwise no correlations between stellar position and velocity. The O-type stars in Cr 228 and the South Pillars region have a lower velocity dispersion than the region as a whole, supporting a model of distributed massive star formation rather than migration from the central clusters. We compare our stellar velocities to the Carina Nebula's molecular gas and find that Tr 14 shows a close kinematic association with the Northern Cloud. In contrast, Tr 16 has accelerated the Southern Cloud by 10-15km/s, possibly triggering further massive star formation. The expansion of the surrounding H II region is not symmetric about the O-type stars in radial velocity space, indicating that the ionized gas is constrained by denser material on the far side.
- ID:
- ivo://CDS.VizieR/J/ApJ/811/85
- Title:
- RVs & V-band LCs of probable members of Cyg OB2
- Short Name:
- J/ApJ/811/85
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Cygnus OB2 Association is one of the nearest and largest collections of massive stars in the Galaxy. Situated at the heart of the "Cygnus X" complex of star-forming regions and molecular clouds, its distance has proven elusive owing to the ambiguous nature of kinematic distances along this l~=80{deg} sightline and the heavy, patchy extinction. In an effort to refine the three-dimensional geometry of key Cygnus X constituents, we have measured distances to four eclipsing double-lined OB-type spectroscopic binaries that are probable members of Cyg OB2. We find distances of 1.33+/-0.17, 1.32+/-0.07, 1.44+/-0.18, and 1.32+/-0.13kpc toward MT91 372, MT91 696, CPR2002 A36, and Schulte 3, respectively. We adopt a weighted average distance of 1.33+/-0.06kpc. This agrees well with spectrophotometric estimates for the Association as a whole and with parallax measurements of protostellar masers in the surrounding interstellar clouds, thereby linking the ongoing star formation in these clouds with Cyg OB2. We also identify Schulte 3C (O9.5V), a 4" visual companion to the 4.75 day binary Schulte 3(A+B), as a previously unrecognized Association member.
- ID:
- ivo://CDS.VizieR/J/MNRAS/475/1609
- Title:
- RV variability in NGC 2516 and NGC 2422
- Short Name:
- J/MNRAS/475/1609
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present multi-epoch, high-dispersion, optical spectra obtained with the Michigan/Magellan Fiber System of 126 and 125 Sun-like stars in the young clusters NGC 2516 (141Myr) and NGC 2422 (73Myr). We determine stellar properties including radial velocity (RV), Teff, [Fe/H], [{alpha}/Fe], and the line-of-sight rotation rate, v_r_sin(i), from these spectra. Our median RV precision of 80m/s on individual epochs that span a temporal baseline of 1.1yr enables us to investigate membership, stellar binarity, and search for sub-stellar companions. We determine membership probabilities and RV variability probabilities for our sample along with candidate companion orbital periods for a select subset of stars. We identify 81 RV members in NGC 2516, 27 spectroscopic binaries (17 previously identified as photometric binaries), and 16 other stars that show significant RV variability after accounting for average stellar jitter found to be at the 74m/s level. In NGC 2422 we identify 57 members, 11 spectroscopic binaries, and 3 other stars that show significant RV variability after accounting for an average jitter of 138m/s. We use Monte Carlo simulations to verify our stellar jitter measurements, determine the proportion of exoplanets and stellar companions to which we are sensitive, and estimate companion mass limits for our targets. We also report mean cluster metallicity, velocity, and velocity dispersion based on our member targets and identify 58 non-member stars as RV variables - 24 of which have RV amplitudes that imply stellar or brown-dwarf mass companions. Finally, we note the discovery of a separate RV clustering of stars in our NGC 2422 sample.
- ID:
- ivo://CDS.VizieR/J/ApJ/877/44
- Title:
- RV variability in SDSS dwarf carbon stars
- Short Name:
- J/ApJ/877/44
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Dwarf carbon (dC) stars (main-sequence stars showing carbon molecular bands) were initially thought to be an oxymoron because only asymptotic giant branch (AGB) stars dredge carbon into their atmospheres. Mass transfer from a former AGB companion that has since faded to a white dwarf seems the most likely explanation. Indeed, a few types of giants known to show anomalous abundances- notably, the CH, Ba and CEMP-s stars-are known to have a high binary frequency. The dC stars may be the enhanced-abundance progenitors of most, if not all of these systems, but this requires demonstrating a high binary frequency for dCs. Here, for a sample of 240 dC stars targeted for repeat spectroscopy by the SDSS-IV's Time Domain Spectroscopic Survey, we analyze radial velocity (RV) variability to constrain the binary frequency and orbital properties. A handful of dC systems show large velocity variability (>100km/s). We compare the dCs to a control sample with a similar distribution of magnitude, color, proper motion, and parallax. Using Markov chain Monte Carlo methods, we use the measured {Delta}RV distribution to estimate the binary fraction and the separation distribution assuming both a unimodal and bimodal distribution. We find the dC stars have an enhanced binary fraction of 95%, consistent with them being products of mass transfer. These models result in mean separations of less than 1 au corresponding to periods on the order of 1 yr. Our results support the conclusion that dC stars form from close binary systems via mass transfer.
- ID:
- ivo://CDS.VizieR/J/AJ/155/120
- Title:
- RV variability of the K-giant {gamma} Draconis
- Short Name:
- J/AJ/155/120
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present precise stellar radial velocity (RV) measurements of {gamma} Dra taken from 2003 to 2017. The data from 2003 to 2011 show coherent, long-lived variations with a period of 702 days. These variations are consistent with the presence of a planetary companion having m sin i=10.7 M_Jup_ whose orbital properties are typical for giant planets found around evolved stars. An analysis of the Hipparcos photometry, Ca II S-index measurements, and measurements of the spectral line shapes during this time show no variations with the RV of the planet, which seems to "confirm" the presence of the planet. However, RV measurements taken from 2011-2017 seem to refute this. From 2011-2013, the RV variations virtually disappear, only to return in 2014 but with a noticeable phase shift. The total RV variations are consistent either with amplitude variations on timescales of ~10.6 year, or the beating effect between two periods of 666 and 801 days. It seems unlikely that both these signals stem from a two-planet system. A simple dynamical analysis indicates that there is only a 1%-2% chance that the two-planet system is stable. Rather, we suggest that this multi-periodic behavior may represent a new form of stellar variability, possibly related to oscillatory convective modes. If such intrinsic stellar variability is common around K giant stars and is attributed to planetary companions, then the planet occurrence rate among these stars may be significantly lower than thought.
- ID:
- ivo://CDS.VizieR/J/A+A/568/A26
- Title:
- SACY. V. Multiple systems
- Short Name:
- J/A+A/568/A26
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Dynamically undisrupted, young populations of stars are crucial in studying the role of multiplicity in relation to star formation. Loose nearby associations provide us with a great sample of close (<150pc) pre-main sequence (PMS) stars across the very important age range (~5-70Myr) to conduct such research. We characterize the short period multiplicity fraction of the search for associations containing young stars (SACY) sample, accounting for any identifiable bias in our techniques and present the role of multiplicity fractions of the SACY sample in the context of star formation. Using the cross-correlation technique we identified double-lined and triple-lined spectroscopic systems (SB2/SB3s), in addition to this we computed radial velocity (RV) values for our subsample of SACY targets using several epochs of fiber-fed extended range optical spectrograph (FEROS) and ultraviolet and visual echelle spectrograph (UVES) data. These values were used to revise the membership of each association that was then combined with archival data to determine significant RV variations across different data epochs characteristic of multiplicity; single-lined multiple systems (SB1). Results: We identified seven new multiple systems (SB1s: 5, SB2s: 2). We find no significant difference between the short period multiplicity fraction (F_m_) of the SACY sample and that of close star-forming regions (~-2Myr) and the field (F_m_<=10%). These are seen both as a function of age and as a function of primary mass, M_1_, in the ranges P [1:200day] and M_2_ [0.08M_{sun}_-M_1_], respectively. Our results are consistent with the picture of universal star formation, when compared to the field and close star-forming regions (SFRs). We comment on the implications of the relationship between increasing multiplicity fraction with the primary mass within the close companion range in relation to star formation.