- ID:
- ivo://CDS.VizieR/J/AJ/160/22
- Title:
- TOI-1235 Radial velocities & optical spectroscopy
- Short Name:
- J/AJ/160/22
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Small planets on close-in orbits tend to exhibit envelope mass fractions of either effectively zero or up to a few percent depending on their size and orbital period. Models of thermally driven atmospheric mass loss and of terrestrial planet formation in a gas-poor environment make distinct predictions regarding the location of this rocky/nonrocky transition in period-radius space. Here we present the confirmation of TOI-1235b (P=3.44days, r_p_=1.738_-0.076_^+0.087^R_{Earth}_), a planet whose size and period are intermediate between the competing model predictions, thus making the system an important test case for emergence models of the rocky/nonrocky transition around early M dwarfs (R_s_=0.630{+/-}0.015R_{sun}_, M_s_=0.640{+/-}0.016M_{sun}_). We confirm the TESS planet discovery using reconnaissance spectroscopy, ground-based photometry, high- resolution imaging, and a set of 38 precise radial velocities (RVs) from HARPS-N and HIRES. We measure a planet mass of 6.91_-0.85_^+0.75^M_{Earth}_, which implies an iron core mass fraction of 20_-12_^+15^% in the absence of a gaseous envelope. The bulk composition of TOI-1235b is therefore consistent with being Earth-like, and we constrain an H/He envelope mass fraction to be <0.5% at 90% confidence. Our results are consistent with model predictions from thermally driven atmospheric mass loss but not with gas-poor formation, suggesting that the former class of processes remains efficient at sculpting close-in planets around early M dwarfs. Our RV analysis also reveals a strong periodicity close to the first harmonic of the photometrically determined stellar rotation period that we treat as stellar activity, despite other lines of evidence favoring a planetary origin (P=21.8_-0.8_^+0.9^days, m_p_sini=13.0_-5.3_^+3.8^M_{Earth}_) that cannot be firmly ruled out by our data.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/656/A124
- Title:
- TOI-1201 RV and activity index
- Short Name:
- J/A+A/656/A124
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- We present the discovery of a transiting mini-Neptune around TOI-1201, a relatively bright and moderately young early M dwarf (J~9.5mag, ~600-800Myr) in an equal-mass ~8arcsecond-wide binary system, using data from the Transiting Exoplanet Survey Satellite (TESS), along with follow-up transit observations. With an orbital period of 2.49d, TOI-1201~b is a warm mini-Neptune with a radius of R_b_=2.415+/-0.090R_{Earth}_. This signal is also present in the precise radial velocity measurements from CARMENES, confirming the existence of the planet and providing a planetary mass of M_b_=6.28+/-0.88M_{Earth}_ and, thus, an estimated bulk density of 2.45^+0.48^_-0.42_g/cm^3^. The spectroscopic observations additionally show evidence of a signal with a period of 19d and a long periodic variation of undetermined origin. In combination with ground-based photometric monitoring from WASP-South and ASAS-SN, we attribute the 19d signal to the stellar rotation period (P_rot_=19-23d), although we cannot rule out that the variation seen in photometry belongs to the visually close binary companion. We calculate precise stellar parameters for both TOI-1201 and its companion. The transiting planet is an excellent target for atmosphere characterization (the transmission spectroscopy metric is 97^+21^_-16_) with the upcoming James Webb Space Telescope. It is also feasible to measure its spin-orbit alignment via the Rossiter-McLaughlin effect using current state-of-the-art spectrographs with submeter per second radial velocity precision.
- ID:
- ivo://CDS.VizieR/J/A+A/649/A26
- Title:
- TOI-178 six transiting planets
- Short Name:
- J/A+A/649/A26
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Determining the architecture of multi-planetary systems is one of the cornerstones of understanding planet formation and evolution. Resonant systems are especially important as the fragility of their orbital configuration ensures that no significant scattering or collisional event has taken place since the earliest formation phase when the parent protoplanetary disc was still present. In this context, TOI-178 has been the subject of particular attention since the first TESS observations hinted at the possible presence of a near 2:3:3 resonant chain. Here we report the results of observations from CHEOPS, ESPRESSO, NGTS, and SPECULOOS with the aim of deciphering the peculiar orbital architecture of the system. We show that TOI-178 harbours at least six planets in the super-Earth to mini-Neptune regimes, with radii ranging from 1.152_-0.070_^+0.073^ to 2.87_-0.13_^+0.14^ Earth radii and periods of 1.91, 3.24, 6.56, 9.96, 15.23, and 20.71-days. All planets but the innermost one form a 2:4:6:9:12 chain of Laplace resonances, and the planetary densities show important variations from planet to planet, jumping from 1.02^+0.28^_-0.23_ to 0.177^+0.055^_-0.061_ times the Earth's density between planets c and d. Using Bayesian interior structure retrieval models, we show that the amount of gas in the planets does not vary in a monotonous way, contrary to what one would expect from simple formation and evolution models and unlike other known systems in a chain of Laplace resonances. The brightness of TOI-178 (H=8.76mag, J=9.37mag, V=11.95mag) allows for a precise characterisation of its orbital architecture as well as of the physical nature of the six presently known transiting planets it harbours. The peculiar orbital configuration and the diversity in average density among the planets in the system will enable the study of interior planetary structures and atmospheric evolution, providing important clues on the formation of super-Earths and mini-Neptunes.
- ID:
- ivo://CDS.VizieR/J/A+A/609/A53
- Title:
- Tracing stars of MW dwarf galaxies: Sextans
- Short Name:
- J/A+A/609/A53
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a deep and very spatially extended CTIO/DECam g and r photometric catalogue of point-sources (reaching out to ~2 magnitudes below the oldest main-sequence turn-off and covering ~20deg^2^) around the Sextans dwarf spheroidal galaxy, together with another catalogue of literature spectroscopic measurements (Walker et al., 2009, Cat. J/AJ/137/3100 and Battaglia et al., 2011, Cat. J/MNRAS/411/1013) with updated membership probabilities.
- ID:
- ivo://CDS.VizieR/J/MNRAS/437/2831
- Title:
- 4 transiting F-M binary systems
- Short Name:
- J/MNRAS/437/2831
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report the discovery of four transiting F-M binary systems with companions between 0.1 and 0.2M_{sun}_ in mass by the HATSouth survey. These systems have been characterized via a global analysis of the HATSouth discovery data, combined with high-resolution radial velocities and accurate transit photometry observations. We determined the masses and radii of the component stars using a combination of two methods: isochrone fitting of spectroscopic primary star parameters and equating spectroscopic primary star rotation velocity with spin-orbit synchronization. These new very low mass companions are HATS550-016B (0.110_-0.006_^+0.005^M_{sun}_, 0.147_-0.004_^+0.003^R_{sun}_), HATS551-019B (0.17_-0.01_^+0.01^M_sun}_, 0.18_-0.01_^+0.01^R_{sun}_), HATS551-021B (0.132_-0.005_^+0.014^M_sun}_, 0.154_-0.008_^+0.006^R_{sun}_) and HATS553-001B (0.20_-0.02_^+0.01^M_sun}_, 0.22_-0.01_^+0.01^R_{sun}_). We examine our sample in the context of the radius anomaly for fully convective low-mass stars. Combining our sample with the 13 other well-studied very low mass stars, we find a tentative 5 percent systematic deviation between the measured radii and theoretical isochrone models.
- ID:
- ivo://CDS.VizieR/J/ApJ/704/1107
- Title:
- Transiting planet candidates in HATNet field 205
- Short Name:
- J/ApJ/704/1107
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report the discovery of HAT-P-8b, a transiting planet with mass M_p_=1.52^+0.18^_-0.16_M_J_, radius R_p_=1.50^+0.08^_-0.06_R_J_, and photometric period P=3.076days. HAT-P-8b has a somewhat inflated radius for its mass, and a somewhat large mass for its period. The host star is a solar-metallicity F dwarf, with mass M_*_=1.28+/-0.04M_{sun}_ and R_*_=1.58^+0.08^_-0.06R_{sun}_. HAT-P-8b was initially identified as one of the 32 transiting-planet candidates in HATNet field G205. We describe the procedures that we have used to follow up these candidates with spectroscopic and photometric observations, and we present a status report on our interpretation for 28 of the candidates. Eight are eclipsing binaries with orbital solutions whose periods are consistent with their photometric ephemerides; two of these spectroscopic orbits are single-lined and six are double-lined.
- ID:
- ivo://CDS.VizieR/J/A+A/602/A107
- Title:
- 231 transiting planets eccentricity and mass
- Short Name:
- J/A+A/602/A107
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We carried out a Bayesian homogeneous determination of the orbital parameters of 231 transiting giant planets (TGPs) that are alone or have distant companions; we employed differential evolution Markov chain Monte Carlo methods to analyse radial-velocity (RV) data from the literature and 782 new high-accuracy RVs obtained with the HARPS-N spectrograph for 45 systems over ~3 years. Our work yields the largest sample of systems with a transiting giant exoplanet and coherently determined orbital, planetary, and stellar parameters. We found that the orbital parameters of TGPs in non-compact planetary systems are clearly shaped by tides raised by their host stars. Indeed, the most eccentric planets have relatively large orbital separations and/or high mass ratios, as expected from the equilibrium tide theory. This feature would be the outcome of planetary migration from highly eccentric orbits excited by planet-planet scattering, Kozai-Lidov perturbations, or secular chaos. The distribution of {alpha}=a/a_R_, where a and a_R_ are the semi-major axis and the Roche limit, for well-determined circular orbits peaks at 2.5; this agrees with expectations from the high-eccentricity migration (HEM), although it might not be limited to this migration scenario. The few planets of our sample with circular orbits and {alpha}>5 values may have migrated through disc-planet interactions instead of HEM. By comparing circularisation times with stellar ages, we found that hot Jupiters with a<0.05au have modified tidal quality factors 10^5^<~Qp<~10^9^, and that stellar Qs>~10^6^-10^7^ are required to explain the presence of eccentric planets at the same orbital distance.
- ID:
- ivo://CDS.VizieR/J/AJ/157/174
- Title:
- Transiting planets in Kepler-47 circumbinary system
- Short Name:
- J/AJ/157/174
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Of the nine confirmed transiting circumbinary planet systems, only Kepler-47 is known to contain more than one planet. Kepler-47 b (the "inner planet") has an orbital period of 49.5 days and a radius of about 3 R_{Earth}_. Kepler-47 c (the "outer planet") has an orbital period of 303.2 days and a radius of about 4.7 R_{Earth}_. Here we report the discovery of a third planet, Kepler-47 d (the "middle planet"), which has an orbital period of 187.4 days and a radius of about 7 R_{Earth}_. The presence of the middle planet allows us to place much better constraints on the masses of all three planets, where the 1{sigma} ranges are less than 26 M_{Earth}_, between 7-43 M_{Earth}_, and between 2-5 M_{Earth}_ for the inner, middle, and outer planets, respectively. The middle and outer planets have low bulk densities, with {rho}_middle_<0.68 g/cm^3^ and {rho}_outer_<0.26 g/cm^3^ at the 1{sigma} level. The two outer planets are "tightly packed", assuming the nominal masses, meaning no other planet could stably orbit between them. All of the orbits have low eccentricities and are nearly coplanar, disfavoring violent scattering scenarios and suggesting gentle migration in the protoplanetary disk.
- ID:
- ivo://CDS.VizieR/J/AJ/157/149
- Title:
- Transit parameters for planets around subgiants
- Short Name:
- J/AJ/157/149
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the discovery of seven new planets and eight planet candidates around subgiant stars, as additions to the known sample of planets around "retired A stars". Among these are the possible first three-planet systems around subgiant stars, HD 163607 and HD 4917. Additionally, we present calculations of possible transit times, durations, depths, and probabilities for all known planets around subgiant (3<logg<4) stars, focused on possible transits during the TESS mission. While most have transit probabilities of 1%-2%, we find that there are three planets with transit probabilities >9%.
- ID:
- ivo://CDS.VizieR/J/ApJ/888/L5
- Title:
- Transits, occultation times and RVs of WASP-12b
- Short Name:
- J/ApJ/888/L5
- Date:
- 25 Oct 2021 10:19:53
- Publisher:
- CDS
- Description:
- WASP-12b is a transiting hot Jupiter on a 1.09 day orbit around a late-F star. Since the planet's discovery in 2008, the time interval between transits has been decreasing by 29+/-2ms/yr. This is a possible sign of orbital decay, although the previously available data left open the possibility that the planet's orbit is slightly eccentric and is undergoing apsidal precession. Here, we present new transit and occultation observations that provide more decisive evidence for orbital decay, which is favored over apsidal precession by a {Delta}BIC of 22.3 or Bayes factor of 70000. We also present new radial-velocity data that rule out the Romer effect as the cause of the period change. This makes WASP-12 the first planetary system for which we can be confident that the orbit is decaying. The decay timescale for the orbit is P/{dot}P=3.25+/-0.23Myr. Interpreting the decay as the result of tidal dissipation, the modified stellar tidal quality factor is Q_*_^'^=1.8x10^5^.