- ID:
- ivo://CDS.VizieR/J/MNRAS/369/120
- Title:
- Kinematic survey of planetary nebulae in M31
- Short Name:
- J/MNRAS/369/120
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a catalogue of positions, magnitudes and velocities for 3300 emission-line objects found by the Planetary Nebula Spectrograph in a survey of the Andromeda galaxy, M31. Of these objects, 2615 are found likely to be planetary nebulae (PNe) associated with M31. The survey area covers the whole of M31's disc out to a radius of 1.5{deg}. Beyond this radius, observations have been made along the major and minor axes, and the Northern Spur and Southern Stream regions. The calibrated data have been checked for internal consistency and compared with other catalogues. With the exception of the very central, high surface brightness region of M31, this survey is complete to a magnitude limit of m5007~23.75, 3.5mag into the PN luminosity function.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/584/A2
- Title:
- KMOS view of the Galactic centre. I.
- Short Name:
- J/A+A/584/A2
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Galactic centre hosts a crowded, dense nuclear star cluster with a half-light radius of 4pc. Most of the stars in the Galactic centre are cool late-type stars, but there are also >=100 hot early-type stars in the central parsec of the Milky Way. These stars are only 3-8Myr old. Our knowledge of the number and distribution of early-type stars in the Galactic centre is incomplete. Only a few spectroscopic observations have been made beyond a projected distance of 0.5pc of the Galactic centre. The distribution and kinematics of early-type stars are essential to understand the formation and growth of the nuclear star cluster.
- ID:
- ivo://CDS.VizieR/J/ApJ/866/139
- Title:
- Knots in the deep [FeII]+[SiI] image of the SNR Cas A
- Short Name:
- J/ApJ/866/139
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a long-exposure (~10hr), narrowband image of the supernova (SN) remnant Cassiopeia A (Cas A) centered at 1.644{mu}m emission. The passband contains [FeII] 1.644{mu}m and [SiI] 1.645{mu}m lines, and our "deep [FeII]+[SiI] image" provides an unprecedented panoramic view of Cas A, showing both shocked and unshocked SN ejecta, together with shocked circumstellar medium at subarcsecond (~0.7" or 0.012pc) resolution. The diffuse emission from the unshocked SN ejecta has a form of clumps, filaments, and arcs, and their spatial distribution correlates well with that of the Spitzer [SiII] infrared emission, suggesting that the emission is likely due to [SiI] not [FeII] as in shocked material. The structure of the optically invisible western area of Cas A is clearly seen for the first time. The area is filled with many quasi-stationary flocculi (QSFs) and fragments of the disrupted ejecta shell. We identified 309 knots in the deep [FeII]+[SiI] image and classified them into QSFs and fast-moving knots (FMKs). The comparison with previous optical plates indicates that the lifetime of most QSFs is >~60yr. The total H+He mass of QSFs is ~0.23M_{sun}_, implying that the mass fraction of dense clumps in the progenitor's mass ejection immediately prior to the SN explosion is about 4%-6%. FMKs in the deep [FeII]+[SiI] image mostly correspond to S-rich ejecta knots in optical studies, while those outside the southeastern disrupted ejecta shell appear Fe-rich. The mass of the [FeII] line emitting, shocked dense Fe ejecta is ~3x10^-5^M_{sun}_.
- ID:
- ivo://CDS.VizieR/J/ApJ/884/6
- Title:
- Known members of Orion A with Gaia DR2 data
- Short Name:
- J/ApJ/884/6
- Date:
- 04 Dec 2021
- Publisher:
- CDS
- Description:
- The star-forming region of the Orion Nebula (ONC) is ideal to study the stellar dynamics of young stars in a clustered environment. Using Gaia DR2 we search for pre-main sequence stars with unusually high proper motions that may be representative of a dynamical ejection from unstable young triple systems or other close three-body encounters. We identify 26 candidate stars that are likely to have had such an encounter in the last 1Myr. Nine of these stars could be traced back to the densest central-most region of the ONC, the Trapezium, while five others have likely interactions with other OB-type stars in the cluster. Seven stars originate from other nearby populations within the Orion Complex that coincidentally scattered toward the ONC. A definitive point of origin cannot be identified for the remaining sources. These observations shed light on the frequency of the ejection events in young clusters.
- ID:
- ivo://CDS.VizieR/J/A+A/571/A37
- Title:
- KOI-1257 photometric and velocimetric data
- Short Name:
- J/A+A/571/A37
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In this paper we report a new transiting warm giant planet: KOI-1257b. It was first detected in photometry as a planet-candidate by the Kepler space telescope and then validated thanks to a radial velocity follow-up with the SOPHIE spectrograph. It orbits its host star with a period of 86.647661d+/-3s and a high eccentricity of 0.772+/-0.045. The planet transits the main star of a metal-rich, relatively old binary system with stars of mass of 0.99+/-0.05M_{sun}_ and 0.70+/-0.07M_{sun}_ for the primary and secondary, respectively. This binary system is constrained thanks to a self-consistent modelling of the Kepler transit light curve, the SOPHIE radial velocities, line bisector and full-width half maximum (FWHM) variations, and the spectral energy distribution. However, future observations are needed to confirm it. The PASTIS fully-Bayesian software was used to validate the nature of the planet and to determine which star of the binary system is the transit host. By accounting for the dilution from the binary both in photometry and in radial velocity, we find that the planet has a mass of 1.45+/-0.35M_jup_, and a radius of 0.94+/-0.12R_jup_, and thus a bulk density of 2.1+/-1.2g/cm^3^. The planet has an equilibrium temperature of 511+/-50K, making it one of the few known members of the warm-Jupiter population. The HARPS-N spectrograph was also used to observe a transit of KOI-1257b, simultaneously with a joint amateur and professional photometric follow-up, with the aim of constraining the orbital obliquity of the planet. However, the Rossiter-McLaughlin effect was not clearly detected, resulting in poor constraints on the orbital obliquity of the planet.
- ID:
- ivo://CDS.VizieR/J/MNRAS/422/2600
- Title:
- KOI-74 radial velocities and fluxes
- Short Name:
- J/MNRAS/422/2600
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a light-curve analysis and radial velocity study of KOI-74, an eclipsing A star + white dwarf binary with a 5.2-d orbit. Aside from new spectroscopy covering the orbit of the system, we used 212-d of publicly available Kepler observations and present the first complete light-curve fitting to these data, modelling the eclipses and transits, ellipsoidal modulation, reflection and Doppler beaming. Markov chain Monte Carlo simulations are used to determine the system parameters and uncertainty estimates.
- ID:
- ivo://CDS.VizieR/J/ApJ/836/167
- Title:
- K2 planetary syst. around low-mass stars. I.
- Short Name:
- J/ApJ/836/167
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present near-infrared spectra for 144 candidate planetary systems identified during Campaigns 1-7 of the NASA K2 Mission. The goal of the survey was to characterize planets orbiting low-mass stars, but our Infrared Telescope Facility/SpeX and Palomar/TripleSpec spectroscopic observations revealed that 49% of our targets were actually giant stars or hotter dwarfs reddened by interstellar extinction. For the 72 stars with spectra consistent with classification as cool dwarfs (spectral types K3-M4), we refined their stellar properties by applying empirical relations based on stars with interferometric radius measurements. Although our revised temperatures are generally consistent with those reported in the Ecliptic Plane Input Catalog (EPIC), our revised stellar radii are typically 0.13R_{sun}_ (39%) larger than the EPIC values, which were based on model isochrones that have been shown to underestimate the radii of cool dwarfs. Our improved stellar characterizations will enable more efficient prioritization of K2 targets for follow-up studies.
- ID:
- ivo://CDS.VizieR/J/A+A/608/A93
- Title:
- K2-106 radial velocities measurements
- Short Name:
- J/A+A/608/A93
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Planets in the mass range from 2 to 15M_{Erath}_ are very diverse. Some of them have low densities, while others are very dense. By measuring the masses and radii, the mean densities, structure, and composition of the planets are constrained. These parameters also give us important information about their formation and evolution, and about possible processes for atmospheric loss. We determined the masses, radii, and mean densities for the two transiting planets orbiting K2-106. The inner planet has an ultra-short period of 0.57 days. The period of the outer planet is 13.3 days.
- ID:
- ivo://CDS.VizieR/J/ApJ/879/100
- Title:
- K2 rotation periods for Hyades & Praesepe members
- Short Name:
- J/ApJ/879/100
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We analyze K2 light curves for 132 low-mass (1M_{sun}_>~M*>~0.1M_{sun}_) members of the 600-800Myr old Hyades cluster and measure rotation periods (P_rot_) for 116 of these stars. These include 93 stars with no prior P_rot_ measurements; the total number of Hyads with a known P_rot_ is now 232. We then combine literature binary data with Gaia DR2 photometry and astrometry to select single-star sequences in the Hyades and its roughly coeval Praesepe open cluster and derive a new reddening value of A_V_=0.035+/-0.011 for Praesepe. Comparing the effective temperature-P_rot_ distributions for the Hyades and Praesepe, we find that solar-type Hyads rotate, on average, 0.4d slower than their Praesepe counterparts. This P_rot_ difference indicates that the Hyades is slightly older than Praesepe: we apply a new gyrochronology model tuned with Praesepe and the Sun and find an age difference between the two clusters of 57Myr. However, this P_rot_ difference decreases and eventually disappears for lower-mass stars. This provides further evidence for stalling in the rotational evolution of these stars and highlights the need for more detailed analysis of angular momentum evolution for stars of different masses and ages.
- ID:
- ivo://CDS.VizieR/J/ApJS/253/22
- Title:
- Ks absolute magnitudes from LAMOST for OB stars
- Short Name:
- J/ApJS/253/22
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a data-driven method to estimate absolute magnitudes for O- and B-type stars from the LAMOST spectra, which we combine with Gaia DR2 parallaxes to infer distance and binarity. The method applies a neural network model trained on stars with precise Gaia parallax to the spectra and predicts K_s_-band absolute magnitudes M_Ks_ with a precision of 0.25mag, which corresponds to a precision of 12% in spectroscopic distance. For distant stars (e.g., >5kpc), the inclusion of constraints from spectroscopic M_Ks_ significantly improves the distance estimates compared to inferences from Gaia parallax alone. Our method accommodates for emission-line stars by first identifying them via principal component analysis reconstructions and then treating them separately for the M_Ks_ estimation. We also take into account unresolved binary/multiple stars, which we identify through deviations in the spectroscopic M_Ks_ from the geometric M_Ks_ inferred from Gaia parallax. This method of binary identification is particularly efficient for unresolved binaries with near equal-mass components and thus provides a useful supplementary way to identify unresolved binary or multiple-star systems. We present a catalog of spectroscopic M_Ks_, extinction, distance, flags for emission lines, and binary classification for 16002 OB stars from LAMOST DR5. As an illustration, we investigate the M_Ks_ of the enigmatic LB-1 system, which Liu et al. 2019Natur.575..618L had argued consists of a B star and a massive stellar-mass black hole. Our results suggest that LB-1 is a binary system that contains two luminous stars with comparable brightness, and the result is further supported by parallax from the Gaia eDR3.