- ID:
- ivo://CDS.VizieR/J/ApJ/784/53
- Title:
- AKARI NIR spectral atlas of Galactic HII regions
- Short Name:
- J/ApJ/784/53
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Using a large collection of near-infrared spectra (2.5-5.4 {mu}m) of Galactic HII regions and HII region-like objects, we perform a systematic investigation of astronomical polycyclic aromatic hydrocarbon (PAH) features. Thirty-six objects were observed using the infrared camera on board the AKARI satellite as a part of a director's time program. In addition to the well known 3.3-3.6 {mu}m features, most spectra show a relatively weak emission feature at 5.22 {mu}m with sufficient signal-to-noise ratios, which we identify as the PAH 5.25 {mu}m band (previously reported).
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJS/216/17
- Title:
- AKARI 2.5-5um spectra of nearby Type-1 AGNs
- Short Name:
- J/ApJS/216/17
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present 2.5-5.0{mu}m spectra of 83 nearby (0.002<z<0.48) and bright (K<14mag) type-1 active galactic nuclei (AGNs) taken with the Infrared Camera on board AKARI. The 2.5-5.0{mu}m spectral region contains emission lines such as Br{beta} (2.63{mu}m), Br{alpha} (4.05{mu}m), and polycyclic aromatic hydrocarbons (3.3{mu}m), which can be used for studying the black hole (BH) masses and star formation activity in the host galaxies of AGNs. The spectral region also suffers less dust extinction than in the ultra violet (UV) or optical wavelengths, which may provide an unobscured view of dusty AGNs. Our sample is selected from bright quasar surveys of Palomar-Green and SNUQSO, and AGNs with reverberation-mapped BH masses from Peterson et al. Using 11 AGNs with reliable detection of Brackett lines, we derive the Brackett-line-based BH mass estimators. We also find that the observed Brackett line ratios can be explained with the commonly adopted physical conditions of the broad line region. Moreover, we fit the hot and warm dust components of the dust torus by adding photometric data of SDSS, 2MASS, WISE, and ISO to the AKARI spectra, finding hot and warm dust temperatures of ~1100K and ~220K, respectively, rather than the commonly cited hot dust temperature of 1500K.
- ID:
- ivo://CDS.VizieR/J/AJ/142/170
- Title:
- ALFALFA survey: the {alpha}.40 HI source catalog
- Short Name:
- J/AJ/142/170
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a current catalog of 21cm HI line sources extracted from the Arecibo Legacy Fast Arecibo L-band Feed Array (ALFALFA) survey over ~2800deg^2^ of sky: the {alpha}.40 catalog. Covering 40% of the final survey area, the {alpha}.40 catalog contains 15855 sources in the regions 07h30m<RA<16h30m, +04{deg}<DEC<+16{deg}, and +24{deg}<DEC<+28{deg} and 22h<RA<03h, +14{deg}<DEC<+16{deg}, and +24{deg}<DEC<+32{deg}. Of those, 15041 are certainly extragalactic, yielding a source density of 5.3 galaxies per deg^2^, a factor of 29 improvement over the catalog extracted from the HI Parkes All-Sky Survey. In addition to the source centroid positions, HI line flux densities, recessional velocities, and line widths, the catalog includes the coordinates of the most probable optical counterpart of each HI line detection, and a separate compilation provides a cross-match to identifications given in the photometric and spectroscopic catalogs associated with the Sloan Digital Sky Survey Data Release 7. Fewer than 2% of the extragalactic HI line sources cannot be identified with a feasible optical counterpart; some of those may be rare OH megamasers at 0.16<z<0.25. A detailed analysis is presented of the completeness, width-dependent sensitivity function and bias inherent of the {alpha}.40 catalog. The impact of survey selection, distance errors, current volume coverage, and local large-scale structure on the derivation of the HI mass function is assessed.
- ID:
- ivo://CDS.VizieR/J/A+A/618/A16
- Title:
- A(Li) and 6Li/7Li 3D NLTE corrections
- Short Name:
- J/A+A/618/A16
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The purpose of this work is to provide corrections for the lithium abundance, A(Li), and the ^6^Li/^7^Li ratio that can easily be applied to correct 1D LTE lithium abundances in G and F dwarf stars of approximately solar mass and metallicity for three-dimensional (3D) and non-LTE (NLTE) effects. The corrections for A(Li) and ^6^Li/^7^Li are computed using grids of 3D NLTE and 1D LTE synthetic lithium line profiles, generated from 3D hydro-dynamical CO5BOLD and 1D hydrostatic LHD model atmospheres, respectively. For comparative purposes, all calculations are performed for three different line lists representing the LiI 670.8nm spectral region. The 3D NLTE corrections are then approximated by analytical expressions as a function of the stellar parameters (Teff, logg, [Fe/H], vsini, A(Li), ^6^Li/^7^Li). The derived 3D NLTE corrections range between -0.01 and +0.11dex for A(Li), and between -4.9 and -0.4% for the ^6^Li/^7^Li ratio, depending on the adopted stellar parameters. Our findings show a general consistency with recent works on lithium abundance corrections. In the case of the ^6^Li/^7^Li ratio, our corrections are always negative, showing that 1D LTE analysis can significantly overestimate the presence of ^6^Li (up to 4.9 percentage points) in the atmospheres of solar-like dwarf stars. These results emphasize the importance of reliable 3D model atmospheres combined with NLTE line formation for deriving precise isotopic lithium abundances. Although 3D NLTE spectral synthesis implies an extensive computational effort, the results can be made accessible with parametric tools like the ones presented in this work.
- ID:
- ivo://CDS.VizieR/J/ApJ/836/77
- Title:
- A library of high-S/N optical spectra of FGKM stars
- Short Name:
- J/ApJ/836/77
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Classification of stars, by comparing their optical spectra to a few dozen spectral standards, has been a workhorse of observational astronomy for more than a century. Here, we extend this technique by compiling a library of optical spectra of 404 touchstone stars observed with Keck/HIRES by the California Planet Search. The spectra have high resolution (R~60000), high signal-to-noise ratio (S/N~150/pixel), and are registered onto a common wavelength scale. The library stars have properties derived from interferometry, asteroseismology, LTE spectral synthesis, and spectrophotometry. To address a lack of well-characterized late-K dwarfs in the literature, we measure stellar radii and temperatures for 23 nearby K dwarfs, using modeling of the spectral energy distribution and Gaia parallaxes. This library represents a uniform data set spanning the spectral types ~M5-F1 (T_eff_~3000-7000K, R_*_~0.1-16R_{Sun}_). We also present "Empirical SpecMatch" (SpecMatch-Emp), a tool for parameterizing unknown spectra by comparing them against our spectral library. For FGKM stars, SpecMatch-Emp achieves accuracies of 100K in effective temperature (T_eff_), 15% in stellar radius (R_*_), and 0.09dex in metallicity ([Fe/H]). Because the code relies on empirical spectra it performs particularly well for stars ~K4 and later, which are challenging to model with existing spectral synthesizers, reaching accuracies of 70K in T_eff_, 10% in R_*_, and 0.12dex in [Fe/H]. We also validate the performance of SpecMatch-Emp, finding it to be robust at lower spectral resolution and S/N, enabling the characterization of faint late-type stars. Both the library and stellar characterization code are publicly available.
- ID:
- ivo://CDS.VizieR/J/AZh/92/834
- Title:
- A list of tantalum lines
- Short Name:
- J/AZh/92/834
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The list contains wavelengths of spectral lines of neutral and single ionized tantalum for accurate calibration of the Hamilton echelle spectrograph installed at the Shane 3-m telescope of the Lick observatory that was in operation before June 9, 2011 (S&J Box, Westinghouse WL23418, symbol ThAr02). Furthermore, the list may be used for wavelength calibration of another Lick lamp (symbol ThAr07, Westinghouse Box, Westinghouse WL32809) that was in operation from February 17, 1995 to June 19, 2011.
- ID:
- ivo://CDS.VizieR/J/A+A/636/A67
- Title:
- ALMA maps of 6 sources of star forming regions
- Short Name:
- J/A+A/636/A67
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- As a building block for amino acids, formamide (NH_2_CHO) is an important molecule in astrobiology and astrochemistry, but its formation path in the interstellar medium is not understood well. We aim to find empirical evidence to support the chemical relationships of formamide to HNCO and H_2_CO. We examine high angular resolution (~0.2") Atacama Large Millimeter/submillimeter Array (ALMA) maps of six sources in three high-mass star-forming regions and compare the spatial extent, integrated emission peak position, and velocity structure of HNCO and H_2_CO line emission with that of NH_2_CHO by using moment maps. Through spectral modeling, we compare the abundances of these three species. In these sources, the emission peak separation and velocity dispersion of formamide emission is most often similar to HNCO emission, while the velocity structure is generally just as similar to H_2_CO and HNCO (within errors). From the spectral modeling, we see that the abundances between all three of our focus species are correlated, and the relationship between NH_2_CHO and HNCO reproduces the previously demonstrated abundance relationship. In this first interferometric study, which compares two potential parent species to NH_2_CHO, we find that all moment maps for HNCO are more similar to NH_2_CHO than H_2_CO in one of our six sources (G24 A1). For the other five sources, the relationship between NH_2_CHO, HNCO, and H_2_CO is unclear as the different moment maps for each source are not consistently more similar to one species as opposed to the other.
- ID:
- ivo://CDS.VizieR/J/ApJ/903/145
- Title:
- ALMaQUEST. IV. ALMA-MaNGA QUEnching & star formation
- Short Name:
- J/ApJ/903/145
- Date:
- 15 Mar 2022
- Publisher:
- CDS
- Description:
- The ALMaQUEST (ALMA-MaNGA QUEnching and STar formation) survey is a program with spatially resolved 12CO(1-0) measurements obtained with the Atacama Large Millimeter Array (ALMA) for 46 galaxies selected from the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) DR15 optical integral-field spectroscopic survey. The aim of the ALMaQUEST survey is to investigate the dependence of star formation activity on the cold molecular gas content at kiloparsec scales in nearby galaxies. The sample consists of galaxies spanning a wide range in specific star formation rate (sSFR), including starburst (SB), main-sequence (MS), and green valley (GV) galaxies. In this paper, we present the sample selection and characteristics of the ALMA observations and showcase some of the key results enabled by the combination of spatially matched stellar populations and gas measurements. Considering the global (aperture-matched) stellar mass, molecular gas mass, and star formation rate of the sample, we find that the sSFR depends on both the star formation efficiency (SFE) and the molecular gas fraction (f_H_2__), although the correlation with the latter is slightly weaker. Furthermore, the dependence of sSFR on the molecular gas content (SFE or f_H_2__) is stronger than that on either the atomic gas fraction or the molecular-to-atomic gas fraction, albeit with the small Hi sample size. On kiloparsec scales, the variations in both SFE and f_H_2__ within individual galaxies can be as large as 1-2dex, thereby demonstrating that the availability of spatially resolved observations is essential to understand the details of both star formation and quenching processes.
- ID:
- ivo://CDS.VizieR/J/ApJ/882/138
- Title:
- ALMA Spectroscopic Survey in the HUDF (ASPECS)
- Short Name:
- J/ApJ/882/138
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We use the results from the ALMA large program ASPECS, the spectroscopic survey in the Hubble Ultra Deep Field (HUDF), to constrain CO luminosity functions of galaxies and the resulting redshift evolution of {rho}(H_2_). The broad frequency range covered enables us to identify CO emission lines of different rotational transitions in the HUDF at z>1. We find strong evidence that the CO luminosity function evolves with redshift, with the knee of the CO luminosity function decreasing in luminosity by an order of magnitude from ~2 to the local universe. Based on Schechter fits, we estimate that our observations recover the majority (up to ~90%, depending on the assumptions on the faint end) of the total cosmic CO luminosity at z=1.0-3.1. After correcting for CO excitation, and adopting a Galactic CO-to-H_2_ conversion factor, we constrain the evolution of the cosmic molecular gas density {rho}(H_2_): this cosmic gas density peaks at z~1.5 and drops by a factor of 6.5_-1.4_^+1.8^ to the value measured locally. The observed evolution in {rho}(H_2_), therefore, closely matches the evolution of the cosmic star formation rate density {rho}SFR. We verify the robustness of our result with respect to assumptions on source inclusion and/or CO excitation. As the cosmic star formation history can be expressed as the product of the star formation efficiency and the cosmic density of molecular gas, the similar evolution of {rho}(H_2_) and {rho}SFR leaves only little room for a significant evolution of the average star formation efficiency in galaxies since z~3 (85% of cosmic history).
- ID:
- ivo://CDS.VizieR/J/A+A/580/A113
- Title:
- A low-luminosity type-1 QSO sample. III.
- Short Name:
- J/A+A/580/A113
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report on the optical spectroscopic analysis of a sample of 99 low-luminosity quasi-stellar objects (LLQSOs) at z<=0.06 base the Hamburg/ESO QSO Survey (HES). To better relate the low-redshift active galactic nucleus (AGN) to the QSO population it is important to study samples of the latter type at a level of detail similar to that of the low-redshift AGN. Powerful QSOs, however, are absent at low redshifts due to evolutionary effects and their small space density. Our understanding of the (distant) QSO population is, therefore, significantly limited by angular resolution and sensitivity. The LLQSOs presented here offer the possibility of studying the faint end of this population at smaller cosmological distances and, therefore, in greater detail. In comparing two spectroscopic methods, we aim to establish a reliable activity classification scheme of the LLQSOs sample. Our goal is to enrich our systematic multiwavelength analysis of the AGN/starburst relation in these systems and give a complementary information on this particular sample of LLQSOs from the Hamburg ESO survey. Here, we present results of the analysis of visible wavelength spectroscopy provided by the HES and the 6 Degree Field Galaxy Survey (6dFGS). These surveys use different spectroscopic techniques, long-slit and circular fiber, respectively. These allow us to assess the influence of different apertures on the activity of the LLQSOs using classical optical diagnostic diagrams. We perform a Gaussian fitting of strong optical emission lines and decompose narrow and broad Balmer components. A small number of our LLQSO present no broad component, which is likely to be present but buried in the noise. Two sources show double broad components, whereas six comply with the classic NLS1 requirements. As expected in NLR of broad line AGNs, the [SII]-based electron density values range between 100 and 1000N_e_/cm^3^. Using the optical characteristics of Populations A and B, we find that 50% of our sources with H{beta} broad emission are consistent with the radio-quiet sources definition. The remaining sources could be interpreted as low-luminosity radio-loud quasar. The BPT-based classification renders an AGN/Seyfert activity between 50 to 60%. For the remaining sources, the possible starburst contribution might control the LINER and HII classification. Finally, we discuss the aperture effect as responsible for the differences found between data sets, although variability in the BLR could play a significant role as well.