- ID:
- ivo://CDS.VizieR/J/A+A/381/446
- Title:
- Astrometric Radial Velocities. III.
- Short Name:
- J/A+A/381/446
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Astrometrically determined kinematic data are given for nearby clusters and associations, including astrometric radial velocities and kinematically improved parallaxes for individual stars. The astrometric radial velocities are determined independent of spectroscopy. Table 1 gives the space velocities and internal velocity dispersions of the clusters and associations. The electronic Table1 (Table1.dat) is an extended version of Table 1 in the journal paper, now including the full covariances of the space velocity components as well as the space motion in spherical coordinates. Table 2 gives the astrometric radial velocities and kinematically improved parallaxes for the individual stars. The electronic Table 2 is an extended version of Table 2 in the journal paper, now including all clusters and associations studied; results using data from both the Hipparcos and Tycho-2catalogues, as well as the standard errors for all deduced quantities. The electronic Table 2 is divided into 10 sub-tables (table1a.dat through table2j.dat), one for each cluster or association.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/III/280
- Title:
- Astron low resolution UV spectra
- Short Name:
- III/280
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Astron was a Soviet spacecraft launched on 23 March 1983, and it was operational for eight years as the largest ultraviolet space telescope during its lifetime. Astron's payload consisted of an 80 cm ultraviolet telescope Spica and an X-ray spectroscope. We present 159 low resolution spectra of stars obtained during the Astron space mission (Tables 4, 5; hereafter table numbers in Boyarchuk et al. 1994 are given). Table 4 (observational log, logs.dat) contains data on 142 sessions for 90 stars (sorted in ascending order of RA), where SED was obtained by scanning method, and then data on 17 sessions for 15 stars (also sorted in ascending order of RA), where multicolor photometry was done. Kilpio et al. (2016, Baltic Astronomy 25, 23) presented results of the comparison of Astron data to the modern UV stellar data, discussed Astron precision and accuracy, and made some conclusions on potential application areas of these data. Also 34 sessions of observations of 27 stellar systems (galaxies and globular clusters) are presented. Observational log was published in Table 10 and data were published in Table 11, respectively. Also 16 sessions of observations of 12 nebulae (Table 12 for observational log and Table 13 for data themselves) are presented. Background radiation intensity data (Table 14) are presented in Table 15. At last, data on comets are presented in different forms. We draw your attention that observational data for stars, stellar systems, nebulae and comets are expressed in log [erg/s/cm^2/A], while for comets data 10E-13 erg/s/cm^2/A units are used, hydroxyl band photometric data for comets are expressed in log [erg/s/cm^2], and for the background data it is radiation intensity expressed in log [erg/s/cm^2/A/sr]. Scanned (PDF version of) Boyarchuk et al. (1994) book is available at http://www.inasan.ru/~astron/astron.pdf
- ID:
- ivo://CDS.VizieR/J/A+AS/137/351
- Title:
- A supergiants UV and visible spectra
- Short Name:
- J/A+AS/137/351
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- This paper is the first of a series whose aim is to perform a systematic study of A-type supergiant atmospheres and winds. Here we present a spectral atlas of 41 A-supergiants observed by us in high and medium resolution in the visible and ultraviolet. The atlas consists of profiles of the H{alpha}, H{beta}, H{gamma}, H{delta}, H{epsilon}, Ca II (H and K), Na I (D1 and D2), Mg II_4481_, Mg II [uv1] and Fe II [uv1, uv2, uv3, uv62, uv63, uv161] lines for 41 stars with spectral types ranging from B9 to A9 and luminosity classes Ia, Iab and Ib, and provides the basic data for a thoughtful study of these stars. The overall characteristics of the sample as well as the data reduction procedures are described. We also present some examples of spectral variability.
- ID:
- ivo://CDS.VizieR/J/A+A/653/A134
- Title:
- AT 2018bwo light curves
- Short Name:
- J/A+A/653/A134
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- Luminous red novae (LRNe) are astrophysical transients associated with the partial ejection of a binary system's common envelope (CE) shortly before its merger. Here we present the results of our photometric and spectroscopic follow-up campaign of AT 2018bwo (DLT 18x), a LRN discovered in NGC 45, and investigate its progenitor system using binary stellar-evolution models. The transient reached a peak magnitude of M_r_=-10.97+/-0.11 and maintained this brightness during its optical plateau of t_p_=41+/-5d ays. During this phase, it showed a rather stable photospheric temperature of ~3300K and a luminosity of ~10^40^erg/s. Although the luminosity and duration of AT 2018bwo is comparable to the LRNe V838 Mon and M31-2015LRN, its photosphere at early times appears larger and cooler, likely due to an extended mass-loss episode before the merger. Toward the end of the plateau, optical spectra showed a reddened continuum with strong molecular absorption bands. The IR spectrum at +103 days after discovery was comparable to that of an M8.5 II type star, analogous to an extended AGB star. The reprocessed emission by the cooling dust was also detected in the mid-infrared bands ~1.5 years after the outburst. Archival Spitzer and Hubble Space Telescope data taken 10-14yrs before the transient event suggest a progenitor star with T_prog_~6500K, R_prog_~100R_{sun}_, and L_prog_=2x10^4^L_{sun}_, and an upper limit for optically thin warm (1000K) dust mass of M_d_<10^-6^M_{sun}_. Using stellar binary-evolution models, we determined the properties of binary systems consistent with the progenitor parameter space. For AT 2018bwo, we infer a primary mass of 12-16M_{sun}_, which is 9-45% larger than the ~11M_{sun}_ obtained using single-star evolution models. The system, consistent with a yellow-supergiant primary, was likely in a stable mass-transfer regime with -2.4 <= log (M_dot/Msun /yr) <= -1.2 a decade before the main instability occurred. During the dynamical merger, the system would have ejected 0.15-0.5M_{sun}_ with a velocity of ~500km/s.
- ID:
- ivo://CDS.VizieR/J/MNRAS/452/3969
- Title:
- ATCA Survey of Sagittarius B2 at 7mm
- Short Name:
- J/MNRAS/452/3969
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a 30-50GHz survey of Sagittarius B2(N) conducted with the Australia Telescope Compact Array (ATCA) with 5 - 10 arcsec resolution. We analyze the spectra towards three HII regions that have foreground molecular gas in Sgr B2. Towards the most line-dense region, we detect >500 spectral line components, >90% of which are assigned to H and He recombination lines and 53 firmly identified molecular species (not including isotopologues). The data reveal extremely subthermally excited molecular gas in Sgr B2 absorbing against the continuum background, as well as molecular line emission from two hot cores in Sgr B2(N). They also also contain line-of-sight absorption by ~15 molecules observed in translucent gas in the Galactic Center, bar, and intervening spiral arm clouds, revealing the complex chemistry and clumpy structure of this gas. Formamide (NH_2_CHO) is detected for the first time in a translucent cloud.
- ID:
- ivo://CDS.VizieR/J/A+A/647/A93
- Title:
- AT 2020hat and AT 2020kog light curves
- Short Name:
- J/A+A/647/A93
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the results of our monitoring campaigns of the luminous red novae (LRNe) AT 2020hat in NGC 5068 and AT 2020kog in NGC 6106. The two objects were imaged (and detected) before their discovery by routine survey operations. They show a general trend of slow luminosity rise lasting at least a few months. The subsequent major LRN outbursts were extensively followed in photometry and spectroscopy. The light curves present an initial short-duration peak, followed by a redder plateau phase. AT 2020kog is a moderately luminous event peaking at ~7x10^40^erg/s, while AT 2020hat is almost one order of magnitude fainter than AT 2020kog, although it is still more luminous than V838 Mon. In analogy with other LRNe, the spectra of AT 2020kog change significantly with time. They resemble those of type IIn supernovae at early phases, then they become similar to those of K-type stars during the plateau, and to M-type stars at very late phases. In contrast, AT 2020hat already shows a redder continuum at early epochs, and its spectrum shows the late appearance of molecular bands. A moderate-resolution spectrum of AT 2020hat taken at +37d after maximum shows a forest of narrow P Cygni lines of metals with velocities of 180 km/s, along with an Halpha emission with a full-width at half-maximum velocity of 250km/s. For AT 2020hat, a robust constraint on its quiescent progenitor is provided by archival images of the Hubble Space Telescope. The progenitor is clearly detected as a mid-K type star, with an absolute magnitude of M_F606W=-3.33+/-0.09mag and a colour of F606W-F814W=1.14+/-0.05mag, which are inconsistent with the expectations from a massive star that could later produce a core-collapse supernova. Although quite peculiar, the two objects nicely match the progenitor versus light curve absolute magnitude correlations discussed in the literature.
- ID:
- ivo://CDS.VizieR/J/A+A/619/A134
- Title:
- ATHOS. Flux ratio based stellar parameterization
- Short Name:
- J/A+A/619/A134
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The rapidly increasing number of stellar spectra obtained by existing and future large-scale spectroscopic surveys feeds a demand for fast and efficient tools for the spectroscopic determination of fundamental stellar parameters. Such tools should not only comprise customized solutions for one particular survey or instrument, but, in order to enable cross-survey comparability, they should also be capable of dealing with spectra from a variety of spectrographs, resolutions, and wavelength coverages. To meet these ambitious specifications, we developed ATHOS (A Tool for HOmogenizing Stellar parameters), a fundamentally new analysis tool that adopts easy-to-use, computationally inexpensive analytical relations tying flux ratios (FRs) of designated wavelength regions in optical spectra to the stellar parameters effective temperature (Teff), iron abundance ([Fe/H]), and surface gravity (logg). Our Teff estimator is based on FRs from nine pairs of wavelength ranges around the Balmer lines H{beta} and H{alpha}, while for [Fe/H] and logg we provide 31 and 11 FRs, respectively, which are spread between ~4800{AA} and ~6500{AA}; a region covered by most optical surveys. The analytical relations employing these FRs were trained on N=124 real spectra of a stellar benchmark sample that covers a large parameter space of Teff~=4000 to 6500K (spectral types F to K), [Fe/H]~=-4.5 to 0.3dex, and logg~=1 to 5dex, which at the same time reflects ATHOS' range of applicability. We find accuracies of 97K for Teff, 0.16dex for [Fe/H], and 0.26dex for logg, which are merely bounded by finite uncertainties in the training sample parameters. ATHOS' internal precisions can be better by up to 70%. We tested ATHOS on six independent large surveys spanning a wide range of resolutions (R~=2000 to 52000), amongst which are the Gaia-ESO and the SDSS/SEGUE surveys. The exceptionally low execution time (<30ms per spectrum per CPU core) together with a comparison to the literature parameters showed that ATHOS can successfully achieve its main objectives, in other words fast stellar parametrization with cross-survey validity, high accuracy, and high precision. These are key to homogenize the output from future surveys, such as 4MOST or WEAVE.
- ID:
- ivo://CDS.VizieR/J/A+A/632/L6
- Title:
- AT 2018hso light curves and spectra
- Short Name:
- J/A+A/632/L6
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The absolute magnitudes of luminous red novae (LRNe) are intermediate between those of novae and supernovae (SNe), and show a relatively homogeneous spectro-photometric evolution. Although they were thought to derive from core instabilities in single stars, there is growing support for the idea that they are triggered by binary interaction that possibly ends with the merging of the two stars. AT 2018hso is a new transient showing transitional properties between those of LRNe and the class of intermediate-luminosity red transients (ILRTs) similar to SN 2008S. Through the detailed analysis of the observed parameters, our study support that it actually belongs to the LRN class and was likely produced by the coalescence of two massive stars. We obtained ten months of optical and near-infrared photometric monitoring, and 11 epochs of low-resolution optical spectroscopy of AT 2018hso. We compared its observed properties with those of other ILRTs and LRNe. We also inspected the archival Hubble Space Telescope (HST) images obtained about 15 years ago to constrain the progenitor properties. The light curves of AT 2018hso show a first sharp peak (reddening-corrected M_r_=13.93mag), followed by a broader and shallower second peak that resembles a plateau in the optical bands. The spectra dramatically change with time. Early-time spectra show prominent Balmer emission lines and a weak [CaII] doublet, which is usually observed in ILRTs. However, the strong decrease in the continuum temperature, the appearance of narrow metal absorption lines, the great change in the H{alpha} strength and profile, and the emergence of molecular bands support an LRN classification. The possible detection of a M_I_~8mag source at the position of AT 2018hso in HST archive images is consistent with expectations for a pre-merger massive binary, similar to the precursor of the 2015 LRN in M101. We provide reasonable arguments to support an LRN classification for AT 2018hso. This study reveals growing heterogeneity in the observables of LRNe than has been thought previously, which is a challenge for distinguishing between LRNe and ILRTs. This suggests that the entire evolution of gap transients needs to be monitored to avoid misclassifications.
209. ATLAS3D project. IV.
- ID:
- ivo://CDS.VizieR/J/MNRAS/414/940
- Title:
- ATLAS3D project. IV.
- Short Name:
- J/MNRAS/414/940
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have carried out a survey for CO J=1-0 and J=2-1 emission in the 260 early-type galaxies of the volume-limited ATLAS3D sample, with the goal of connecting their star formation and assembly histories to their cold gas content. This is the largest volume-limited CO survey of its kind and is the first to include many Virgo cluster members. Sample members are dynamically hot galaxies with a median stellar mass ~3x10^10^M_{sun}_; they are selected by their morphology rather than colour, and the bulk of them lie on the red sequence. The overall CO detection rate is 56/259=0.22+/-0.03, with no dependence on the K luminosity and only a modest dependence on the dynamical mass. There are a dozen CO detections among the Virgo cluster members; statistical analysis of their H_2_ mass distributions and their dynamical status within the cluster shows that the cluster's influence on their molecular masses is subtle at best, even though (unlike spirals) they seem to be virialized within the cluster. We suggest that the cluster members have retained their molecular gas through several Gyr residences in the cluster.
- ID:
- ivo://CDS.VizieR/J/A+A/397/1035
- Title:
- Atlas of B6-A2 hyper- and supergiants
- Short Name:
- J/A+A/397/1035
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present an atlas of spectra of 5 emission-line stars: the low-luminosity luminous blue variables (LBVs) HD 168625 and HD 160529, the white hypergiants (and LBV candidates) HD 168607 and AS 314, and the supergiant HD 183143. The spectra were obtained with 2 echelle spectrometers at the 6-m telescope of the Russian Academy of Sciences in the spectral range 4800 to 6700{AA}, with a resolution of 0.4{AA}. We have identified 380 spectral lines and diffuse interstellar bands within the spectra. Specific spectral features of the objects are described.