- ID:
- ivo://CDS.VizieR/J/ApJ/858/60
- Title:
- z~0.8 quiescent galaxy kinematics from LEGA-C
- Short Name:
- J/ApJ/858/60
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present stellar rotation curves and velocity dispersion profiles for 104 quiescent galaxies at z=0.6-1 from the Large Early Galaxy Astrophysics Census (LEGA-C) spectroscopic survey. Rotation is typically probed across 10-20kpc, or to an average of 2.7Re. Combined with central stellar velocity dispersions ({sigma}0) this provides the first determination of the dynamical state of a sample selected by a lack of star formation activity at large lookback time. The most massive galaxies (M_*_>2x10^11^M_{sun}_) generally show no or little rotation measured at 5 kpc (|V_5_|/{sigma}_0_<0.2 in eight of ten cases), while ~64% of less massive galaxies show significant rotation. This is reminiscent of local fast- and slow- rotating ellipticals and implies that low- and high-redshift quiescent galaxies have qualitatively similar dynamical structures. We compare |V_5_|/{sigma}_0_ distributions at z~0.8 and the present day by re-binning and smoothing the kinematic maps of 91 low-redshift quiescent galaxies from the Calar Alto Legacy Integral Field Area (CALIFA) survey and find evidence for a decrease in rotational support since z~1. This result is especially strong when galaxies are compared at fixed velocity dispersion; if velocity dispersion does not evolve for individual galaxies then the rotational velocity at 5kpc was an average of 94+/-22% higher in z~0.8 quiescent galaxies than today. Considering that the number of quiescent galaxies grows with time and that new additions to the population descend from rotationally supported star-forming galaxies, our results imply that quiescent galaxies must lose angular momentum between z~1 and the present, presumably through dissipationless merging, and/or that the mechanism that transforms star-forming galaxies also reduces their rotational support.
« Previous |
3,121 - 3,123 of 3,123
|
Next »
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/778/188
- Title:
- z<0.4 sources from Chandra/SDSS
- Short Name:
- J/ApJ/778/188
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Striking similarities have been seen between accretion signatures of Galactic X-ray binary (XRB) systems and active galactic nuclei (AGNs). XRB spectral states show a V-shaped correlation between X-ray spectral hardness and Eddington ratio as they vary, and some AGN samples reveal a similar trend, implying analogous processes at vastly larger masses and timescales. To further investigate the analogies, we have matched 617 sources from the Chandra Source Catalog (CSC) to Sloan Digital Sky Survey (SDSS) spectroscopy, and uniformly measured both X-ray and optical spectral characteristics across a broad range of AGN and galaxy types. We provide useful tabulations of X-ray spectral slope for broad- and narrow-line AGNs, star-forming and passive galaxies, and composite systems, also updating relationships between optical (H{alpha} and [OIII]) line emission and X-ray luminosity. We further fit broadband spectral energy distributions with a variety of templates to estimate bolometric luminosity. Our results confirm a significant trend in AGNs between X-ray spectral hardness and Eddington ratio expressed in X-ray luminosity, albeit with significant dispersion. The trend is not significant when expressed in the full bolometric or template-estimated AGN luminosity. We also confirm a relationship between the X-ray/optical spectral slope {alpha}_ox_ and Eddington ratio, but it may not follow the trend predicted by analogy with XRB accretion states.
- ID:
- ivo://CDS.VizieR/J/ApJ/822/42
- Title:
- z~3.3 star-forming galaxies NIR spectra
- Short Name:
- J/ApJ/822/42
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We study the relationship between stellar mass, star formation rate (SFR), ionization state, and gas-phase metallicity for a sample of 41 normal star-forming galaxies at 3<~z<~3.7. The gas-phase oxygen abundance, ionization parameter, and electron density of ionized gas are derived from rest-frame optical strong emission lines measured on near-infrared spectra obtained with Keck/Multi-Object Spectrograph for Infra-Red Exploration. We remove the effect of these strong emission lines in the broadband fluxes to compute stellar masses via spectral energy distribution fitting, while the SFR is derived from the dust-corrected ultraviolet luminosity. The ionization parameter is weakly correlated with the specific SFR, but otherwise the ionization parameter and electron density do not correlate with other global galaxy properties such as stellar mass, SFR, and metallicity. The mass-metallicity relation (MZR) at z~3.3 shows lower metallicity by ~0.7dex than that at z=0 at the same stellar mass. Our sample shows an offset by ~0.3dex from the locally defined mass-metallicity-SFR relation, indicating that simply extrapolating such a relation to higher redshift may predict an incorrect evolution of MZR. Furthermore, within the uncertainties we find no SFR-metallicity correlation, suggesting a less important role of SFR in controlling the metallicity at high redshift. We finally investigate the redshift evolution of the MZR by using the model by Lilly et al. (2013ApJ...772..119L), finding that the observed evolution from z=0 to z~3.3 can be accounted for by the model assuming a weak redshift evolution of the star formation efficiency.