Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/636/821
- Title:
- Abundances of Baade's Window K giants
- Short Name:
- J/ApJ/636/821
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the first results of a new abundance survey of the Milky Way bulge based on Keck HIRES spectra of 27 K giants in the Baade's Window (l=1{deg},b=-4{deg}) field. The spectral data used in this study are of much higher resolution and signal-to-noise ratio than previous optical studies of Galactic bulge stars. The [Fe/H] values of our stars, which range between 1.29 and +0.51, were used to recalibrate large low-resolution surveys of bulge stars. Our best value for the mean [Fe/H] of the bulge is -0.10+/-0.04. This mean value is similar to the mean metallicity of the local disk and indicates that there cannot be a strong metallicity gradient inside the solar circle. The metallicity distribution of stars confirms that the bulge does not suffer from the so-called G dwarf problem. This paper also details the new abundance techniques necessary to analyze very metal-rich K giants, including a new Fe line list and regions of low blanketing for continuum identification.
- ID:
- ivo://CDS.VizieR/J/ApJ/864/43
- Title:
- Abundances of 3 bright extremely metal-poor giants
- Short Name:
- J/ApJ/864/43
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present detailed chemical abundances of three new bright (V~11), extremely metal-poor ([Fe/H]~-3.0), r-process-enhanced halo red giants based on high-resolution, high-S/N Magellan/MIKE spectra. We measured abundances for 20-25 neutron-capture elements in each of our stars. J1432-4125 is among the most r-process-rich r-II stars, with [Eu/Fe]=+1.44+/-0.11. J2005-3057 is an r-I star with [Eu/Fe]=+0.94+/-0.07. J0858-0809 has [Eu/Fe]=+0.23+/-0.05 and exhibits a carbon abundance corrected for an evolutionary status of [C/Fe]_corr_=+0.76, thus adding to the small number of known carbon-enhanced r-process stars. All three stars show remarkable agreement with the scaled solar r-process pattern for elements above Ba, consistent with enrichment of the birth gas cloud by a neutron star merger. The abundances for Sr, Y, and Zr, however, deviate from the scaled solar pattern. This indicates that more than one distinct r-process site might be responsible for the observed neutron-capture element abundance pattern. Thorium was detected in J1432-4125 and J2005-3057. Age estimates for J1432-4125 and J2005-3057 were adopted from one of two sets of initial production ratios each by assuming the stars are old. This yielded individual ages of 12+/-6Gyr and 10+/-6Gyr, respectively.
- ID:
- ivo://CDS.VizieR/J/AJ/128/343
- Title:
- Abundances of 10 Cepheids
- Short Name:
- J/AJ/128/343
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the results of a detailed multiphase spectroscopic analysis of 10 classical Cepheids with pulsation periods between 6 and 10 days. For each star, we have derived phased values of effective temperature, surface gravity, microturbulent velocity, and elemental abundances. We show that the elemental abundance results for intermediate-period Cepheids are consistent for all pulsational phases.
- ID:
- ivo://CDS.VizieR/J/A+A/625/A141
- Title:
- Abundances of disk and bulge giants
- Short Name:
- J/A+A/625/A141
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The formation and evolution of the Galactic bulge and the Milky Way is still a debated subject. Observations of the X-shaped bulge, cylindrical stellar motions, and the presumed existence of a fraction of young stars in the bulge have suggested that it formed through secular evolution of the disk and not through gas dissipation and/or mergers, as thought previously. Our goal was to measure the abundances of six iron-peak elements (Sc, V, Cr, Mn, Co, and Ni) in the local thin and thick disks and in the bulge. These abundances can provide additional observational constraints for Galaxy formation and chemical evolution models, and help us to understand whether the bulge has emerged from the thick disk or not. We use high-resolution optical spectra of 291 K giants in the local disk mostly obtained by the FIES at NOT (signal-to-noise ratio (S/N) of 80-100) and 45K giants in the bulge obtained by the UVES/FLAMES at VLT (S/N of 10-80). The abundances are measured using Spectroscopy Made Easy (SME). Additionally, we apply non-local thermodynamic equilibrium (NLTE) corrections to the ratios [Mn/Fe] and [Co/Fe]. The thin and thick disks were separated according to their metallicity, [Ti/Fe], as well as proper motions and the radial velocities from Gaia DR2. The trend of [V/Fe] vs. [Fe/H] shows a separation between the disk components, being more enhanced in the thick disk. Similarly, the [Co/Fe] vs. [Fe/H] trend shows a hint of an enhancement in the local thick disk. The trends of V and Co in the bulge appear to be even more enhanced, although within the uncertainties. The decreasing value of [Sc/Fe] with increasing metallicity is observed in all the components, while our [Mn/Fe] value steadily increases with increasing metallicity in the local disk and the bulge instead. For Cr and Ni we find a flat trend following iron for the whole metallicity range in the disk and the bulge. The ratio of [Ni/Fe] appears slightly overabundant in the thick disk and the bulge compared to the thin disk, although the difference is minor. The somewhat enhanced ratios of [V/Fe] and [Co/Fe] observed in the bulge suggest that the local thick disk and the bulge might have experienced different chemical enrichment and evolutionary paths. However, we are unable to predict the exact evolutionary path of the bulge solely based on these observations. Galactic chemical evolution models could, on the other hand, allow us to predict them using these results.
- ID:
- ivo://CDS.VizieR/J/A+A/598/A100
- Title:
- Abundances of disk giants: O, Mg, Ca and Ti
- Short Name:
- J/A+A/598/A100
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Galactic bulge is an intriguing and significant part of our Galaxy, but it is hard to observe because it is both distant and covered by dust in the disk. Therefore, there are not many high-resolution optical spectra of bulge stars with large wavelength coverage, whose determined abundances can be compared with nearby, similarly analyzed stellar samples. We aim to determine the diagnostically important alpha elements of a sample of bulge giants using high-resolution optical spectra with large wavelength coverage. The abundances found are compared to similarly derived abundances from similar spectra of similar stars in the local thin and thick disks. In this first paper we focus on the solar neighborhood reference sample. We used spectral synthesis to derive the stellar parameters as well as the elemental abundances of both the local and bulge samples of giants. We took special care to benchmark our method of determining stellar parameters against independent measurements of effective temperatures from angular diameter measurements and surface gravities from asteroseismology. In this first paper we present the method used to determine the stellar parameters and elemental abundances, evaluate them, and present the results for our local disk sample of 291 giants. When comparing our determined spectroscopic temperatures to those derived from angular diameter measurements, we reproduce these with a systematic difference of +10K and a standard deviation of 53K. The spectroscopic gravities reproduce those determined from asteroseismology with a systematic offset of +0.10dex and a standard deviation of 0.12dex. When it comes to the abundance trends, our sample of local disk giants closely follows trends found in other works analyzing solar neighborhood dwarfs, showing that the much brighter giant stars are as good abundance probes as the often used dwarfs.
- ID:
- ivo://CDS.VizieR/J/A+A/423/867
- Title:
- Abundances of distant luminous infrared galaxies
- Short Name:
- J/A+A/423/867
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- One hundred and five 15{mu}m-selected objects in three ISO (Infrared Space Observatory) deep survey fields (CFRS 3h, UDSR and UDSF) are studied on the basis of their high-quality optical spectra with resolution R>1000 from VLT/FORS2. ~92 objects (88%) have secure redshifts, ranging from 0 to 1.16 with a median value of z_med_=0.587.
- ID:
- ivo://CDS.VizieR/J/A+A/515/A28
- Title:
- Abundances of dwarfs and giants in 2 open clusters
- Short Name:
- J/A+A/515/A28
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- It has been suggested that the classical chemical analysis may be affected by systematic errors that would introduce abundance differences between dwarfs and giants. For some elements, the abundance difference could be real. We address the issue by observing 2 solar-type dwarfs in NGC 5822 and 3 in IC 4756, and comparing their composition with that of 3 giants in either of the aforementioned clusters. We determine iron abundance and stellar parameters for dwarf stars. Then, abundances of calcium, sodium, nickel, titanium, aluminium, chromium, and silicon were determined for both giants and dwarfs. The standard equivalent width analysis was performed differentially with respect to the Sun. We find an iron abundance for dwarf stars equal to solar to within the margins of error for IC 4756, and slightly above for NGC 5822 ([Fe/H]=0.01 and 0.05dex respectively). We show that, for sodium, silicon, and titanium, abundances of giants are significantly higher than those of the dwarfs of the same cluster (about 0.15, 0.15, and 0.35dex). Other elements may also undergo some enhanced, but all within 0.1dex.
- ID:
- ivo://CDS.VizieR/J/ApJ/878/99
- Title:
- Abundances of dwarfs & giants in NGC752 with HIRES
- Short Name:
- J/ApJ/878/99
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The chemical composition of stars in open clusters provides the best information on the chemical evolution of stars via comparison of main-sequence stars with evolved giants. This is a case study of the abundances in the dwarfs and giants in the old open cluster NGC 752. It is also a pilot program for automated abundance determinations, including equivalent-width measurements, stellar parameter determinations, and abundance analysis. We have found abundances of 31 element-ion combinations in 23 dwarfs and six giants. The mean cluster abundance of Fe is solar with [Fe/H]=-0.01+/-0.06 with no significant difference between the dwarfs and giants. We find that the cluster abundances of other elements, including alpha-elements, to be at or slightly above solar levels. We find some evidence for CNO processing in the spectra of the giants. The enhancement of Na in giants indicates that the NeNa cycle has occurred. The abundances of Mg and Al are similar in the dwarfs and giants, indicating that the hotter MgAl cycle has not occurred. We find no evidence of s-process enhancements in the abundances of heavy elements in the giants.
- ID:
- ivo://CDS.VizieR/J/A+A/448/955
- Title:
- Abundances of emission galaxies in SDSS-DR3
- Short Name:
- J/A+A/448/955
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have re-evaluated empirical expressions for the abundance determination of N, O, Ne, S, Cl, Ar and Fe taking into account the latest atomic data and constructing an appropriate grid of photoionization models with state-of-the art model atmospheres. Using these expressions we have derived heavy element abundances in the ~310 emission-line galaxies from the Data Release 3 of the Sloan Digital Sky Survey (SDSS, <III/241>) with an observed Hbeta flux F(Hbeta)>10^-14^erg/s/cm^2^ and for which the [O III] 4363 emission line was detected at least at a 2sigma level, allowing abundance determination by direct methods. The oxygen abundance 12+logO/H of the SDSS galaxies lies in the range from ~7.1 (Z_{sun}_/30) to ~8.5 (0.7Z_{sun}_). The SDSS sample is merged with a sample of 109 blue compact dwarf (BCD) galaxies with high quality spectra, which contains extremely low-metallicity objects. We use the merged sample to study the abundance patterns of low-metallicity emission-line galaxies. We find that extremely metal-poor galaxies (12+logO/H<7.6, i.e. Z<Z_{sun}_/12) are rare in the SDSS sample. The alpha element to oxygen abundance ratios do not show any significant trends with oxygen abundance, in agreement with previous studies, except for a slight increase of Ne/O with increasing metallicity, which we interpret as due to a moderate depletion of O onto grains in the most metal-rich galaxies. The Fe/O abundance ratio is smaller than the solar value, by up to 1 dex at the high metallicity end. We also find that Fe/O increases with decreasing Hbeta equivalent width EW(Hbeta). We interpret this as a sign of strong depletion onto dust grains, and gradual destruction of those grains on a time scale of a few Myr. All the galaxies are found to have logN/O>-1.6, implying that they have a different nature than the subsample of high-redshift damped Lyalpha systems with log N/O of ~-2.3 and that their ages are larger than 100-300Myr. We confirm the apparent increase in N/O with decreasing EW(Hbeta), already shown in previous studies, and explain it as the signature of gradual nitrogen ejection by massive stars from the most recent starburst.