- ID:
- ivo://CDS.VizieR/J/A+AS/141/141
- Title:
- 8500-8750{AA} high resolution spectroscopy. II.
- Short Name:
- J/A+AS/141/141
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a library of synthetic spectra characterized by -2.5<=[Z/Z_{sun}_]<=+0.5, 4.5<=logg<=1.0, and T_eff_<=7500K computed at the same {lambda}/{Delta}{lambda}=20000 resolving power of the observed spectra given in Paper I (Munari, 1999, Cat. <J/A+AS/137/521>) for 131 standard stars mapping the MKK spectral classification system. This range of parameters includes the majority of the galactic stars expected to dominate the GAIA target population, i.e. F-G-K-M type stars with metallicity ranging from that of the galactic globular clusters to Population I objects. Extension to T_eff_>7500K will be given later on in this series. The 254 synthetic spectra presented here are based on Kurucz's codes and line data and have been computed over a more extended wavelength interval (7650-8750{AA}) than that currently baselined for implementation on GAIA, i.e. the 8500-8750{AA}. This last range is dominated by the near-IR Ca II triplet and the head of the Paschen series. The more extended wavelength range allows us to investigate the behaviour of other strong near-IR spectral features (severely contaminated by telluric absorptions in ground-based observed spectra) as the K I doublet (7664, 7699{AA}), the Na I doublet (8183, 8194{AA}) and the lines of Fe I multiplet N.60 at 8327 and 8388{AA}. The synthetic spectra support our previous conclusions about the superior performance of the Paschen/Ca II 8500-8750{AA} region in meeting the GAIA requirements when compared to other near-IR intervals of similar {Delta}{lambda}=250{AA}.
« Previous |
1 - 10 of 180
|
Next »
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/366/1003
- Title:
- 8500-8750{AA} high resolution spectroscopy. III.
- Short Name:
- J/A+A/366/1003
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In this paper we complete the library of synthetic spectra for the range 7650-8750{AA}, which includes the 8500-8750{AA} interval currently base-lined for the spectroscopic observations by GAIA, candidate ESA Cornerstone 5 mission. As for Paper II (Munari & Castelli, Cat. <J/A+AS/141/141>), the spectra are based on Kurucz's codes and line data. The explored metallicity, gravity and temperature ranges are -2.5<=[Z/Z_{sun}_]<=+0.5, 4.5<=logg<=2.0 and 7750<=T_eff_<=50000K, respectively. The 698 new spectra are computed at the same {lambda}/{Delta}{lambda}=20000 resolving power of the observed spectra given in Paper I (Munari & Castelli, Cat. <J/A+AS/137/521>) (131 standard stars mapping the MKK spectral classification system) and the 254 synthetic spectra of Paper II (characterized by T_eff_<=7500K).
- ID:
- ivo://CDS.VizieR/J/AJ/150/187
- Title:
- Abundances and stellar parameters of LAMOST stars
- Short Name:
- J/AJ/150/187
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We describe an application of the SEGUE Stellar Parameter Pipeline (SSPP) to medium-resolution stellar spectra obtained by the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST), in order to determine estimates of the stellar atmospheric parameters (T_eff_, logg, and [Fe/H]) and the abundance ratios ([{alpha}/Fe] and [C/Fe]). By performing a coordinate match with the LAMOST stellar database, we selected stars with LAMOST spectra in common with stars having available spectroscopy from the Apache Point Observatory Galactic Evolution Experiment (APOGEE), the RAdial Velocity Experiment (RAVE), and the Sloan Extension for Galactic Understanding and Exploration (SEGUE). We ran the selected LAMOST stellar spectra from each survey through SSPP, and compared the stellar parameters down to signal-to-noise ratio (S/N) of 10 and chemical abundances down to S/N=20 derived by SSPP with those determined by the APOGEE, RAVE, and SEGUE software pipelines. Our results show that the derived stellar parameters generally agree quite well, even though there exist some small systematic offsets with small scatter in T_eff_, logg, and [Fe/H], due to the use of different temperature scales, abundance scales, and calibrations adopted by each survey. Comparison of the [{alpha}/Fe] determinations for LAMOST spectra suggests no sign of significant systematic offsets (< -0.04dex), with a small scatter (<0.08dex) relative to stars in common with APOGEE and SEGUE. The [C/Fe] estimates determined for the LAMOST spectra also exhibit good agreement, with a very small offset (~0.01dex) and scatter (~0.12dex) relative to the SEGUE stars, while there exists about a -0.19dex offset, with a small scatter of ~0.13dex, for the APOGEE sample. Due to the existence of small offsets in the stellar parameters and abundances among difference data sets, optimal results when combining the different data sets will be obtained by removing the offsets. Once accomplished, the stellar parameters and chemical abundances estimated by SSPP from the LAMOST stellar spectra should provide a reliable database for studies of the Galactic disk and halo systems.
- ID:
- ivo://CDS.VizieR/J/A+A/449/723
- Title:
- Abundances in atmospheres of stars with planets
- Short Name:
- J/A+A/449/723
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a uniform and homogeneous study of the abundances of Si, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Na, Mg and Al in 100 stars with and 94 without known planetary companions. The main purpose of this work is to make a deep investigation of the abundance of refractory elements, using an enlarged set of data which includes new observations, especially for the sample of stars without known planets. The new comparison sample spans metallicity range -0.70<[Fe/H]<0.50 and fills the gap that previously existed, mainly at high metallicities, in the number of field "single" comparison stars. Furthermore, we improved the line list previously studied by other authors: on average we analysed 90 spectral lines in every spectrum and carefully measured more than 16 600 equivalent widths (EW) to calculate the abundances. We investigate possible differences between the chemical abundances of the two groups of stars, with and without planets. The results are globally comparable to those obtained by other authors, and in most cases the abundance trends of planet-host stars are very similar to those of the comparison sample. This work represents a step towards the comprehension of recently discovered planetary systems. These results could also be useful for verifying galactic models at high metallicities and consequently improve our knowledge of stellar nucleosynthesis and galactic chemical evolution.
- ID:
- ivo://CDS.VizieR/J/A+A/454/895
- Title:
- Abundances of 26 barium stars. I.
- Short Name:
- J/A+A/454/895
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The abundances for Na, Al, alpha-, iron-peak, s-, and r-elements have been derived by using spectrum synthesis for a sample of 26 barium stars, including dwarf barium stars. High-resolution spectra were obtained with the FEROS spectrograph at the ESO-1.52m Telescope, along with photometric data with Fotrap at the Zeiss telescope at the LNA.
- ID:
- ivo://CDS.VizieR/J/A+A/454/917
- Title:
- Abundances of 26 barium stars. II.
- Short Name:
- J/A+A/454/917
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The aim of this work is to quantify the contributions of the s-, r-, and p-processes for the total abundance of heavy elements from abundances derived for a sample of 26 barium stars. The abundances of the sample stars were compared to those of normal stars, thus identifying the fraction relative to the main component of the s-process s. The fittings of the sigmaN curves (neutron-capture cross-section times abundance, plotted against atomic mass number) for the sample stars suggest that the material from the companion asymptotic giant branch star had approximately the solar isotopic composition as concerns fractions of abundances relative to the s-process main component.
- ID:
- ivo://CDS.VizieR/J/A+A/465/249
- Title:
- Age and colors of massive white dwarf stars
- Short Name:
- J/A+A/465/249
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present evolutionary calculations and colors for massive white dwarfs with oxygen-neon cores for masses between 1.06 and 1.28M_{sun}_. The evolutionary stages computed cover the luminosity range from log(L/L_{sun}_)~0.5 down to -5.2. Our cooling sequences are based on evolutionary calculations that take into account the chemical composition expected from massive white dwarf progenitors that burned carbon in partially degenerate conditions. The use of detailed non-gray model atmospheres provides us with accurate outer boundary conditions for our evolving models at low effective temperatures.
- ID:
- ivo://CDS.VizieR/J/A+A/601/A10
- Title:
- A grid of MARCS model atmospheres for S stars
- Short Name:
- J/A+A/601/A10
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- S-type stars are late-type giants whose atmospheres are enriched in carbon and s-process elements because of either extrinsic pollution by a binary companion or intrinsic nucleosynthesis and dredge-up on the thermally-pulsing asymptotic giant branch. A grid of MARCS model atmospheres has been computed for S stars, covering the range 2700<=Teff(K)<=4000, 0.50<=C/O<0.99, 0<=logg<=5, [Fe/H]=0., -0.5dex, and [s/Fe]= 0, 1, and 2 dex (where the latter quantity refers to the global overabundance of s-process elements). The MARCS models make use of a new ZrO line list. Synthetic spectra computed from these models are used to derive photometric indices in the Johnson and Geneva systems, as well as TiO and ZrO band strengths. A method is proposed to select the model best matching any given S star, a non-trivial operation since the grid contains more than 3500 models covering a five-dimensional parameter space. The method is based on the comparison between observed and synthetic photometric indices and spectral band strengths, and has been applied on a vast subsample of the Henize sample of S stars. Our results confirm the old claim by Piccirillo (1980MNRAS.190..441P) that ZrO bands in warm S stars (Teff > 3200K) are not caused by the C/O ratio being close to unity, as traditionally believed, but rather by some Zr overabundance. The TiO and ZrO band strengths, combined with V-K and J-K photometric indices, are used to select Teff, C/O, [Fe/H] and [s/Fe]. The Geneva U-B_1 and B_2-V_1 indices (or any equivalent) are good at selecting the gravity. The defining spectral features of dwarf S stars are outlined, but none is found among the Henize S stars. More generally, it is found that, at Teff=3200K, a change of C/O from 0.5 to 0.99 has a strong impact on V-K (2mag). Conversely, a range of 2 mag in V-K corresponds to a 200K shift along the (Teff, V-K) relationship (for a fixed C/O value). Hence, the use of a (Teff, V-K) calibration established for M stars will yield large errors for S stars, so that a specific calibration must be used, as provided in the present paper. Using the atmospheric parameters derived by our method for the sample of Henize S stars, we show that the extrinsic-intrinsic dichotomy among S stars reveals itself very clearly as a bimodal distribution in the effective temperatures. Moreover, the increase of s-process element abundances with increasing C/O ratios and decreasing temperatures is apparent among intrinsic stars, confirming theoretical expectations.
- ID:
- ivo://CDS.VizieR/J/A+A/618/A16
- Title:
- A(Li) and 6Li/7Li 3D NLTE corrections
- Short Name:
- J/A+A/618/A16
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The purpose of this work is to provide corrections for the lithium abundance, A(Li), and the ^6^Li/^7^Li ratio that can easily be applied to correct 1D LTE lithium abundances in G and F dwarf stars of approximately solar mass and metallicity for three-dimensional (3D) and non-LTE (NLTE) effects. The corrections for A(Li) and ^6^Li/^7^Li are computed using grids of 3D NLTE and 1D LTE synthetic lithium line profiles, generated from 3D hydro-dynamical CO5BOLD and 1D hydrostatic LHD model atmospheres, respectively. For comparative purposes, all calculations are performed for three different line lists representing the LiI 670.8nm spectral region. The 3D NLTE corrections are then approximated by analytical expressions as a function of the stellar parameters (Teff, logg, [Fe/H], vsini, A(Li), ^6^Li/^7^Li). The derived 3D NLTE corrections range between -0.01 and +0.11dex for A(Li), and between -4.9 and -0.4% for the ^6^Li/^7^Li ratio, depending on the adopted stellar parameters. Our findings show a general consistency with recent works on lithium abundance corrections. In the case of the ^6^Li/^7^Li ratio, our corrections are always negative, showing that 1D LTE analysis can significantly overestimate the presence of ^6^Li (up to 4.9 percentage points) in the atmospheres of solar-like dwarf stars. These results emphasize the importance of reliable 3D model atmospheres combined with NLTE line formation for deriving precise isotopic lithium abundances. Although 3D NLTE spectral synthesis implies an extensive computational effort, the results can be made accessible with parametric tools like the ones presented in this work.
- ID:
- ivo://CDS.VizieR/J/A+A/658/A167
- Title:
- (Al2O3)n, n=1-10, clusters data
- Short Name:
- J/A+A/658/A167
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- Aluminium oxide (alumina; Al_2_O_3_) is a promising candidate as a primary dust condensate in the atmospheres of oxygen-rich evolved stars. Therefore, alumina 'seed' particles might trigger the onset of stellar dust formation and of stellar mass loss in the wind. However, the formation of alumina dust grains is not well understood. Aims. We aim to shed light on the initial steps of cosmic dust formation (i.e. nucleation) in oxygen-rich environments via a quantum- chemical bottom-up approach. Starting with an elemental gas-phase composition, we construct a detailed chemical-kinetic network that describes the formation and destruction of aluminium-bearing molecules and dust- forming (Al_2_O_3_)_n_ clusters up to the size of dimers (n=2) coagulating to tetramers (n=4). Intermediary species include the prevalent gas- phase molecules AlO and AlOH as well as Al_x_O_y_ clusters with x=1-5, y=1-6. The resulting extensive network is applied to two model stars, which represent a semi-regular variable and a Mira type, and to different circumstellar gas trajectories, including a non-pulsating outflow and a pulsating model. The growth of larger-sized (Al_2_O_3_)_n_ clusters with n=4-10 is described by the temperature-dependent Gibbs free energies of the most favourable structures (i.e. the global minima clusters) as derived from global optimisation techniques and calculated via density functional theory. We provide energies, bond characteristics, electrostatic properties, and vibrational spectra of the clusters as a function of size, n, and compare these to corundum, which corresponds to the crystalline bulk limit (n to infinity). The circumstellar aluminium gas-phase chemistry in oxygen- rich giants is primarily controlled by AlOH and AlO, which are tightly coupled by the reactions AlO+H_2_, AlO+H_2_O, and their reverse. Models of semi-regular variables show comparatively higher AlO abundances, as well as a later onset and a lower efficiency of alumina cluster formation when compared to Mira-like models. The Mira-like models exhibit an efficient cluster production that accounts for more than 90% of the available aluminium content, which is in agreement with the most recent ALMA observations. Chemical equilibrium calculations fail to predict both the alumina cluster formation and the abundance trends of AlO and AlOH in the asymptotic giant branch dust formation zone. Furthermore, we report the discovery of hitherto unreported global minimum candidates and low-energy isomers for cluster sizes n=7, 9, and 10. A homogeneous nucleation scenario, where Al2O3 monomers are successively added, is energetically viable. However, the formation of the Al2O3 monomer itself represents an energetic bottleneck. Therefore, we provide a bottom-up interpolation of the cluster characteristics towards the bulk limit by excluding the monomer, approximately following an n^(-1/3)^ dependence.