- ID:
- ivo://CDS.VizieR/J/ApJ/631/1100
- Title:
- Atmospheric parameters of DA white dwarfs
- Short Name:
- J/ApJ/631/1100
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present atmospheric parameters for a large sample of DA white dwarfs that are known to be photometrically constant. For each star, we determine the effective temperature and surface gravity by comparing high signal-to-noise ratio optical spectra to the predictions of detailed model atmosphere calculations. We also report the successful prediction and detection of photometric variability in G232-38 based on similar Teff and logg determinations. The atmospheric parameters derived for this sample of constant stars, as well as those for the known sample of bright ZZ Ceti stars (now boosted to a total of 39), have been obtained in a highly homogeneous way.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/798/73
- Title:
- BANYAN All-Sky Survey (BASS) catalog. V. Nearby YMGs
- Short Name:
- J/ApJ/798/73
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the BANYAN All-Sky Survey (BASS) catalog, consisting of 228 new late-type (M4-L6) candidate members of nearby young moving groups (YMGs) with an expected false-positive rate of ~13%. This sample includes 79 new candidate young brown dwarfs and 22 planetary-mass objects. These candidates were identified through the first systematic all-sky survey for late-type low-mass stars and brown dwarfs in YMGs. We cross-matched the Two Micron All Sky Survey and AllWISE catalogs outside of the galactic plane to build a sample of 98970 potential >=M5 dwarfs in the solar neighborhood and calculated their proper motions with typical precisions of 5-15mas/yr. We selected highly probable candidate members of several YMGs from this sample using the Bayesian Analysis for Nearby Young AssociatioNs II tool (BANYAN II, see Gagne+, 2014, J/ApJ/783/121). We used the most probable statistical distances inferred from BANYAN II to estimate the spectral type and mass of these candidate YMG members. We used this unique sample to show tentative signs of mass segregation in the AB Doradus moving group and the Tucana-Horologium and Columba associations. The BASS sample has already been successful in identifying several new young brown dwarfs in earlier publications, and will be of great interest in studying the initial mass function of YMGs and for the search of exoplanets by direct imaging; the input sample of potential close-by >=M5 dwarfs will be useful to study the kinematics of low-mass stars and brown dwarfs and search for new proper motion pairs.
- ID:
- ivo://CDS.VizieR/J/ApJ/783/121
- Title:
- BANYAN II. Nearby young assoc. candidate members
- Short Name:
- J/ApJ/783/121
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present Bayesian Analysis for Nearby Young AssociatioNs II (BANYAN II), a modified Bayesian analysis for assessing the membership of later-than-M5 objects to any of several Nearby Young Associations (NYAs). In addition to using kinematic information (from sky position and proper motion), this analysis exploits 2MASS-WISE color-magnitude diagrams in which old and young objects follow distinct sequences. As an improvement over our earlier work (Malo+, 2013, J/ApJ/762/88), the spatial and kinematic distributions for each association are now modeled as ellipsoids whose axes need not be aligned with the Galactic coordinate axes, and we use prior probabilities matching the expected populations of the NYAs considered versus field stars. We present an extensive contamination analysis to characterize the performance of our new method. We find that Bayesian probabilities are generally representative of contamination rates, except when a parallax measurement is considered. In this case contamination rates become significantly smaller and hence Bayesian probabilities for NYA memberships are pessimistic. We apply this new algorithm to a sample of 158 objects from the literature that are either known to display spectroscopic signs of youth or have unusually red near-infrared colors for their spectral type. Based on our analysis, we identify 25 objects as new highly probable candidates to NYAs, including a new M7.5 bona fide member to Tucana-Horologium, making it the latest-type member. In addition, we reveal that a known L2{gamma} dwarf is co-moving with a bright M5 dwarf, and we show for the first time that two of the currently known ultra red L dwarfs are strong candidates to the AB Doradus moving group. Several objects identified here as highly probable members to NYAs could be free-floating planetary-mass objects if their membership is confirmed.
- ID:
- ivo://CDS.VizieR/J/ApJS/219/33
- Title:
- BANYAN. VII. Candidate YMG members from BASS
- Short Name:
- J/ApJS/219/33
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the results of a near-infrared (NIR) spectroscopic follow-up survey of 182 M4-L7 low-mass stars and brown dwarfs (BDs) from the BANYAN All-Sky Survey (BASS) for candidate members of nearby, young moving groups (YMGs). We confirm signs of low gravity for 42 new BD discoveries with estimated masses between 8 and 75M_Jup_ and identify previously unrecognized signs of low gravity for 24 known BDs. We refine the fraction of low-gravity dwarfs in the high-probability BASS sample to ~82%. We use this unique sample of 66 young BDs, supplemented with 22 young BDs from the literature, to construct new empirical NIR absolute magnitude and color sequences for low-gravity BDs. We show that low-resolution NIR spectroscopy alone cannot differentiate between the ages of YMGs younger than ~120Myr, and that the BT-Settl atmosphere models do not reproduce well the dust clouds in field or low-gravity L-type dwarfs. We obtain a spectroscopic confirmation of low gravity for 2MASS J14252798-3650229, which is a new ~27M_Jup_, L4 {gamma} bona fide member of AB Doradus. We identify a total of 19 new low-gravity candidate members of YMGs with estimated masses below 13M_Jup_, 7 of which have kinematically estimated distances within 40pc. These objects will be valuable benchmarks for a detailed atmospheric characterization of planetary-mass objects with the next generation of instruments. We find 16 strong candidate members of the Tucana-Horologium association with estimated masses between 12.5 and 14M_Jup_, a regime where our study was particularly sensitive. This would indicate that for this association there is at least one isolated object in this mass range for every 17.5_-5.0_^+6.6^ main-sequence stellar member, a number significantly higher than expected based on standard log-normal initial mass function, however, in the absence of radial velocity and parallax measurements for all of them, it is likely that this over-density is caused by a number of young interlopers from other associations.
- ID:
- ivo://CDS.VizieR/J/MNRAS/462/1577
- Title:
- Basic properties of Kepler and CoRoT targets
- Short Name:
- J/MNRAS/462/1577
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- So-called scaling relations based on oscillation frequencies have the potential to reveal the mass and radius of solar-like oscillating stars. In the derivation of these relations, it is assumed that the first adiabatic exponent at the surface ({Gamma}_1s_) of such stars is constant. However, by constructing interior models for the mass range 0.8-1.6M_{sun}_, we show that {Gamma}_1s_ is not constant at stellar surfaces for the effective temperature range with which we deal. Furthermore, the well-known relation between large separation and mean density also depends on {Gamma}_1s_. Such knowledge is the basis for our aim of modifying the scaling relations. There are significant differences between masses and radii found from modified and conventional scaling relations. However, a comparison of predictions of these relations with the non-asteroseismic observations of Procyon A reveals that new scaling relations are effective in determining the mass and radius of stars. In the present study, solar-like oscillation frequencies of 89 target stars (mostly Kepler and CoRoT) were analysed. As well as two new reference frequencies ({nu}_min1_ and {nu}_min2_) found in the spacing of solar-like oscillation frequencies of stellar interior models, we also take into account {nu}_min0_. In addition to the frequency of maximum amplitude, these frequencies have a very strong diagnostic potential in the determination of fundamental properties. The present study applies the derived relations from the models to the solar-like oscillating stars, and computes their effective temperatures using purely asteroseismic methods. There are in general very close agreements between effective temperatures from asteroseismic and non-asteroseismic (spectral and photometric) methods. For the Sun and Procyon A, for example, the agreement is almost total.
- ID:
- ivo://CDS.VizieR/J/A+A/630/A135
- Title:
- Beyond the exoplanet mass-radius relation
- Short Name:
- J/A+A/630/A135
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The mass and radius are two fundamental properties to characterize exoplanets but only for a relatively small fraction of exoplanets are they both available. The mass is often derived from radial velocity measurements while the radius is almost always measured with the transit method. For a large number of exoplanets, either the radius or the mass is unknown, while the host star has been characterized. Several mass-radius relations dependent on the planet's type have been published which often allow to predict the radius, as well as a bayesian code which forecasts the radius of an exoplanet given the mass or vice versa. Our goal is to derive the radius of exoplanets using only observables extracted from spectra used primarily to determine radial velocities and spectral parameters. Our objective is to obtain a mass-radius relation that is independent of the planet's type. We work with a database of confirmed exoplanets with known radii and masses as well as the planets from our Solar System. Using random forests, a machine learning algorithm, we compute the radius of exoplanets and compare the results to the published radii. Our code, BEM, is available online. On top of this, we also explore how the radius estimates compare to previously published mass-radius relations. The estimated radii reproduces the spread in radius found for high mass planets better than previous mass-radius relations. The average error on the radius is 1.8R_Earth_ across the whole range of radii from 1 to 22R_Earth_. We found that a random forest algorithm is able to derive reliable radii especially for planets between 4 and 20R_Earth_, for which the error is smaller than 25%. The algorithm has a low bias but still a high variance, which could be reduced by limiting the growth of the forest or adding more data. The random forest algorithm is a promising method to derive exoplanet properties. We show that the exoplanet's mass and equilibrium temperature are the relevant properties which constrain the radius, and do it with higher accuracy than the previous methods.
- ID:
- ivo://CDS.VizieR/J/A+A/379/162
- Title:
- Binaries with post-T Tauri secondaries
- Short Name:
- J/A+A/379/162
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- File table2 contains the values of the color indices: (b-y), m1, c1, H{beta}, from the Stroemgren photometry and the observational errors on these indices as given by the Hauck and Mermiliod (1998, Cat. <II/215>). The values of Teff and logg are obtained from the Moon & Dworetsky (1985MNRAS.217..305M) calibration to which we have implemented the corrections by Castelli (1991A&A...251..106C). The errors on the parameters Teff and logg, as explained in section 3.3, are the consequence of the observational error on the photometric indices; SigmaTeff is the total error, on Teff, computed as explained in section 3.3. File table5 contains the values of the parallax, the error on the parallax, the Teff and the luminosity for the early-type star and late type star of each visual binary system. The errors on the Teff and on the luminosity are taken into account to compute for each of these parameters its minimum and maximum value. File table7 gives the values of the ages and masses computed for the early-type stars from the Schaller et al. (1993, Cat. <J/A+AS/96/269>) isochrones and Meynet at al. (1993A&AS...98..477M) models and from the Girardi et al. (2000, Cat. <J/A+AS/141/371>) models. The errors on the Teff and the luminosity are used to compute the minimum and the maximum values for the age and the mass. The last two columns concern only the primary stars with a Teff greater than 15000K for which we also compute the age and the mass using as Teff value: (Teff-500K); 500K corresponds to the systematic shift between Teff derived by using different photometric system (see Sect. 3.3). File table9 gives the values of the ages and masses computed for the late-type components from the isochrones and evolutionary tracks by D'Antona et al. (1998, web page, http://www.mporzio.astro.it/~dantona/ ) Palla and Stahler (1999ApJ...525..772P), Siess et al. (2000A&A...358..593S) and Tout et al. (1999MNRAS.310..360T). When possible, the minimum and the maximum values of these parameters are given by taking into account the errors on the Teff and on the luminosity.
- ID:
- ivo://CDS.VizieR/J/AJ/159/15
- Title:
- Binary stars in Upper Scorpius
- Short Name:
- J/AJ/159/15
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- To address the statistics of binary stars in the 8 Myr old Upper Scorpius (USco) star formation region, we conducted a speckle interferometric survey of 614 association members more massive than 0.4 M_{sun}_ (spectral types earlier than M3V) based on the list of Luhman et al. (2018, J/AJ/156/271). We resolved 187 pairs, 55 of which are new discoveries. Also using the published data and the Gaia DR2 (Cat. I/345), a catalog of 250 physical binaries was produced. We carefully estimated detection limits for each target and studied binary statistics in the separation range from 0.06" to 20" (9-2800 au), as well as clustering at larger separations. The frequency of companions with mass ratios q>0.3 in this separation range is 0.33+/-0.04 and 0.35+/-0.04 for early M- and solar-type stars, respectively, larger by 1.62+/-0.22 and 1.39+/-0.18 times compared to field stars of similar masses. The excess is produced mostly by pairs closer than 100 au. At separations from 100 to 10^4^ au, the separation distribution and companion fraction resemble those of solar-type stars in the field. However, unlike in the field, we see a relative deficit of equal-mass binaries at separations of ~500 au, compared to smaller and larger separations. The distribution of q depends on the separation, with a preference of larger q and a larger fraction of twins with q>0.95 at smaller separations. The binary population of USco differs from binaries in the field in several ways and suggests that binary statistics is not universal.
- ID:
- ivo://CDS.VizieR/J/ApJS/244/43
- Title:
- Binary stars parameters from LAMOST & Kepler obs.
- Short Name:
- J/ApJS/244/43
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The parameter distribution of binaries is a fundamental knowledge of the stellar systems. A statistical study on the binary stars is carried out based on the LAMOST spectral and Kepler photometric database. We presented a catalog of 1320 binary stars with plentiful parameters, including period, binary subtype, atmosphere parameters (Teff, [Fe/H], and logg), and the physical properties, such as mass, radius, and age, for the primary component stars. Based on this catalog, the unbiased distribution, rather than the observed distribution, was obtained after the correction of selection biases by the Monte Carlo method considering comprehensive affecting factors. For the first time, the orbital eccentricity distribution of the detached binaries is presented. The distribution differences between the three subtypes of binaries (detached, semidetached, and contact) are demonstrated, which can be explained by the generally accepted evolutional scenarios. Many characteristics of the binary stars, such as huge mass transfer on semidetached binaries, period cutoff on contact binaries, period-temperature relationship of contact binaries, and the evolved binaries, are reviewed by the new database. This work supports a common evolutionary scenario for all subtypes of binary stars.
- ID:
- ivo://CDS.VizieR/J/ApJ/794/35
- Title:
- Binary white dwarfs atmospheric parameters
- Short Name:
- J/ApJ/794/35
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a detailed spectroscopic analysis of 61 low-mass white dwarfs and provide precise atmospheric parameters, masses, and updated binary system parameters based on our new model atmosphere grids and the most recent evolutionary model calculations. For the first time, we measure systematic abundances of He, Ca, and Mg for metal-rich, extremely low mass white dwarfs and examine the distribution of these abundances as a function of effective temperature and mass. Based on our preliminary results, we discuss the possibility that shell flashes may be responsible for the presence of the observed He and metals. We compare stellar radii derived from our spectroscopic analysis to model-independent measurements and find good agreement except for white dwarfs with T_eff_<~10000 K. We also calculate the expected gravitational wave strain for each system and discuss their significance to the eLISA space-borne gravitational wave observatory. Finally, we provide an update on the instability strip of extremely low mass white dwarf pulsators.