- ID:
- ivo://CDS.VizieR/J/ApJ/791/10
- Title:
- Radius distribution of planets around cool stars
- Short Name:
- J/ApJ/791/10
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We calculate an empirical, non-parametric estimate of the shape of the period-marginalized radius distribution of planets with periods less than 150 days using the small yet well-characterized sample of cool (T_eff_< 4000 K) dwarf stars in the Kepler catalog. In particular, we present and validate a new procedure, based on weighted kernel density estimation, to reconstruct the shape of the planet radius function down to radii smaller than the completeness limit of the survey at the longest periods. Under the assumption that the period distribution of planets does not change dramatically with planet radius, we show that the occurrence of planets around these stars continues to increase to below 1 R_{sun}_, and that there is no strong evidence for a turnover in the planet radius function. In fact, we demonstrate using many iterations of simulated data that a spurious turnover may be inferred from data even when the true distribution continues to rise toward smaller radii. Finally, the sharp rise in the radius distribution below ~3 R_{sun}_ implies that a large number of planets await discovery around cool dwarfs as the sensitivities of ground-based transit surveys increase.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/AJ/157/63
- Title:
- Radius relations for low-metallicity M-dwarf stars
- Short Name:
- J/AJ/157/63
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- M subdwarfs are low-metallicity M dwarfs that typically inhabit the halo population of the Galaxy. Metallicity controls the opacity of stellar atmospheres; in metal-poor stars, hydrostatic equilibrium is reached at a smaller radius, leading to smaller radii for a given effective temperature. We compile a sample of 88 stars that span spectral classes K7 to M6 and include stars with metallicity classes from solar-metallicity dwarf stars to the lowest metallicity ultra subdwarfs to test how metallicity changes the stellar radius. We fit models to Palomar Double Spectrograph (DBSP) optical spectra to derive effective temperatures (T_eff_) and we measure bolometric luminosities (L_bol_) by combining broad wavelength-coverage photometry with Gaia parallaxes. Radii are then computed by combining the T_eff_ and L_bol_ using the Stefan-Boltzman law. We find that for a given temperature, ultra subdwarfs can be as much as five times smaller than their solar-metallicity counterparts. We present color-radius and color-surface brightness relations that extend down to [Fe/H] of -2.0 dex, in order to aid the radius determination of M subdwarfs, which will be especially important for the WFIRST exoplanetary microlensing survey.
- ID:
- ivo://CDS.VizieR/J/ApJ/866/99
- Title:
- Revised radii of KIC stars & planets using Gaia DR2
- Short Name:
- J/ApJ/866/99
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- One bottleneck for the exploitation of data from the Kepler mission for stellar astrophysics and exoplanet research has been the lack of precise radii and evolutionary states for most of the observed stars. We report revised radii of 177911 Kepler stars derived by combining parallaxes from the Gaia Data Release 2 with the DR25 Kepler Stellar Properties Catalog. The median radius precision is ~8%, a typical improvement by a factor of 4-5 over previous estimates for typical Kepler stars. We find that ~67% (~120000) of all Kepler targets are main-sequence stars, ~21% (~37000) are subgiants, and ~12% (~21000) are red giants, demonstrating that subgiant contamination is less severe than some previous estimates and that Kepler targets are mostly main-sequence stars. Using the revised stellar radii, we recalculate the radii for 2123 confirmed and 1922 candidate exoplanets. We confirm the presence of a gap in the radius distribution of small, close-in planets, but find that the gap is mostly limited to incident fluxes >200F_{Earth}_, and its location may be at a slightly larger radius (closer to ~2R_{Earth}_) when compared to previous results. Furthermore, we find several confirmed exoplanets occupying a previously described "hot super-Earth desert" at high irradiance, show the relation between a gas-giant planet's radius and its incident flux, and establish a bona fide sample of eight confirmed planets and 30 planet candidates with Rp<2R_{Earth}_ in circumstellar "habitable zones" (incident fluxes between 0.25 and 1.50F_{Earth}_). The results presented here demonstrate the potential for transformative characterization of stellar and exoplanet populations using Gaia data.
- ID:
- ivo://CDS.VizieR/J/ApJS/229/30
- Title:
- Revised stellar properties of Q1-17 Kepler targets
- Short Name:
- J/ApJS/229/30
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The determination of exoplanet properties and occurrence rates using Kepler data critically depends on our knowledge of the fundamental properties (such as temperature, radius, and mass) of the observed stars. We present revised stellar properties for 197096 Kepler targets observed between Quarters 1-17 (Q1-17), which were used for the final transiting planet search run by the Kepler Mission (Data Release 25, DR25). Similar to the Q1-16 catalog by Huber+ (2014, J/ApJS/211/2), the classifications are based on conditioning published atmospheric parameters on a grid of Dartmouth isochrones, with significant improvements in the adopted method and over 29000 new sources for temperatures, surface gravities, or metallicities. In addition to fundamental stellar properties, the new catalog also includes distances and extinctions, and we provide posterior samples for each stellar parameter of each star. Typical uncertainties are ~27% in radius, ~17% in mass, and ~51% in density, which is somewhat smaller than previous catalogs because of the larger number of improved logg constraints and the inclusion of isochrone weighting when deriving stellar posterior distributions. On average, the catalog includes a significantly larger number of evolved solar-type stars, with an increase of 43.5% in the number of subgiants. We discuss the overall changes of radii and masses of Kepler targets as a function of spectral type, with a particular focus on exoplanet host stars.
- ID:
- ivo://CDS.VizieR/J/ApJS/211/2
- Title:
- Revised stellar properties of Q1-16 Kepler targets
- Short Name:
- J/ApJS/211/2
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present revised properties for 196468 stars observed by the NASA Kepler mission and used in the analysis of Quarter 1-16 (Q1-16; May 2009 to Dec 2012) data to detect and characterize transiting planets. The catalog is based on a compilation of literature values for atmospheric properties (temperature, surface gravity, and metallicity) derived from different observational techniques (photometry, spectroscopy, asteroseismology, and exoplanet transits), which were then homogeneously fitted to a grid of Dartmouth stellar isochrones. We use broadband photometry and asteroseismology to characterize 11532 Kepler targets which were previously unclassified in the Kepler Input Catalog (KIC). We report the detection of oscillations in 2762 of these targets, classifying them as giant stars and increasing the number of known oscillating giant stars observed by Kepler by ~20% to a total of ~15500 stars. Typical uncertainties in derived radii and masses are ~40% and ~20%, respectively, for stars with photometric constraints only, and 5%-15% and ~10% for stars based on spectroscopy and/or asteroseismology, although these uncertainties vary strongly with spectral type and luminosity class. A comparison with the Q1-Q12 catalog shows a systematic decrease in radii of M dwarfs, while radii for K dwarfs decrease or increase depending on the Q1-Q12 provenance (KIC or Yonsei-Yale isochrones). Radii of F-G dwarfs are on average unchanged, with the exception of newly identified giants. The Q1-Q16 star properties catalog is a first step toward an improved characterization of all Kepler targets to support planet-occurrence studies.
- ID:
- ivo://CDS.VizieR/J/ApJ/888/34
- Title:
- Robo-AO Kepler asteroseismic survey. II.
- Short Name:
- J/ApJ/888/34
- Date:
- 25 Oct 2021 10:08:41
- Publisher:
- CDS
- Description:
- The Kepler Space Telescope observed over 15000 stars for asteroseismic studies. Of these, 75% of dwarfs (and 8% of giants) were found to show anomalous behavior, such as suppressed oscillations (low amplitude) or no oscillations at all. The lack of solar-like oscillations may be a consequence of multiplicity, due to physical interactions with spectroscopic companions or due to the dilution of oscillation amplitudes from "wide" (AO detected; visual) or spectroscopic companions introducing contaminating flux. We present a search for stellar companions to 327 of the Kepler asteroseismic sample, which were expected to display solar-like oscillations. We used direct imaging with Robo-AO, which can resolve secondary sources at ~0.15", and followed up detected companions with Keck AO. Directly imaged companion systems with both separations of <=0.5" and amplitude dilutions >10% all have anomalous primaries, suggesting these oscillation signals are diluted by a sufficient amount of excess flux. We also used the high-resolution spectrometer ESPaDOnS at the Canada-France-Hawai'i Telescope to search for spectroscopic binaries. We find tentative evidence for a higher fraction of spectroscopic binaries with high radial velocity scatter in anomalous systems, which would be consistent with previous results suggesting that oscillations are suppressed by tidal interactions in close eclipsing binaries.
- ID:
- ivo://CDS.VizieR/J/ApJ/822/97
- Title:
- Rotation-Activity Correlations in K-M dwarfs. I.
- Short Name:
- J/ApJ/822/97
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The reliable determination of rotation-activity correlations (RACs) depends on precise measurements of the following stellar parameters: T_eff_, parallax, radius, metallicity, and rotational speed vsini. In this paper, our goal is to focus on the determination of these parameters for a sample of K and M dwarfs. In a future paper (PaperII; Houdebine+, 2017, J/ApJ/837/96), we will combine our rotational data with activity data in order to construct RACs. Here, we report on a determination of effective temperatures based on the (R-I)_C_ color from the calibrations of Mann+ (2015, J/ApJ/804/64) and Kenyon & Hartmann (1995, J/ApJS/101/117) for four samples of late-K, dM2, dM3, and dM4 stars. We also determine stellar parameters (T_eff_, log(g), and [M/H]) using the principal component analysis-based inversion technique for a sample of 105 late-K dwarfs. We compile all effective temperatures from the literature for this sample. We determine empirical radius-[M/H] correlations in our stellar samples. This allows us to propose new effective temperatures, stellar radii, and metallicities for a large sample of 612 late-K and M dwarfs. Our mean radii agree well with those of Boyajian+ (2012, J/ApJ/757/112). We analyze HARPS and SOPHIE spectra of 105 late-K dwarfs, and we have detected vsini in 92 stars. In combination with our previous vsini measurements in M and K dwarfs, we now derive P/sini measures for a sample of 418 K and M dwarfs. We investigate the distributions of P/sini, and we show that they are different from one spectral subtype to another at a 99.9% confidence level.
- ID:
- ivo://CDS.VizieR/J/ApJ/890/L31
- Title:
- Rotational periods and J_2_ of Kepler stars
- Short Name:
- J/ApJ/890/L31
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Ultra-short-period planets (USPs) provide important clues to planetary formation and migration. It was recently found that the mutual inclinations of the planetary systems are larger if the inner orbits are closer (<~5R_*_) and if the planetary period ratios are larger (P_2_/P_1_>~5). This suggests that the USPs experienced both inclination excitation and orbital shrinkage. Here we investigate the increase in the mutual inclination due to stellar oblateness. We find that the stellar oblateness (within ~1Gyr) is sufficient to enhance the mutual inclination to explain the observed signatures. This suggests that the USPs can migrate closer to the host star in a near coplanar configuration with their planetary companions (e.g., disk migration+tides or in situ+tides), before mutual inclination gets excited due to stellar oblateness.
- ID:
- ivo://CDS.VizieR/J/ApJ/900/118
- Title:
- RSGs in the LMC & sp. follow-up for LMC & SMC
- Short Name:
- J/ApJ/900/118
- Date:
- 20 Jan 2022 11:32:23
- Publisher:
- CDS
- Description:
- The binary fraction of unevolved massive stars is thought to be 70%-100% but there are few observational constraints on the binary fraction of the evolved version of a subset of these stars, the red supergiants (RSGs). Here we identify a complete sample of RSGs in the Large Magellanic Cloud (LMC) using new spectroscopic observations and archival UV, IR, and broadband optical photometry. We find 4090 RSGs with logL/L_{sun}_>3.5, with 1820 of them having logL/L_{sun}_>4, which we believe is our completeness limit. We additionally spectroscopically confirmed 38 new RSG + B-star binaries in the LMC, bringing the total known up to 55. We then estimated the binary fraction using a k-nearest neighbors algorithm that classifies stars as single or binary based on photometry with a spectroscopic sample as a training set. We take into account observational biases such as line-of-sight stars and binaries in eclipse while also calculating model- dependent corrections for RSGs with companions that our observations were not designed to detect. Based on our data, we find an initial result of 13.5_-6.67_^+7.56^% for RSGs with O- or B-type companions. Using the Binary Population and Spectral Synthesis models to correct for unobserved systems, this corresponds to a total RSG binary fraction of 19.5_-6.7_^+7.6^% . This number is in broad agreement with what we would expect given an initial OB binary distribution of 70%, a predicted merger fraction of 20%-30%, and a binary interaction fraction of 40%-50%.
- ID:
- ivo://CDS.VizieR/J/AJ/162/259
- Title:
- Scaling K2. IV. Campaigns 1-8 & 10-18 planets sample
- Short Name:
- J/AJ/162/259
- Date:
- 15 Mar 2022
- Publisher:
- CDS
- Description:
- We provide the first full K2 transiting exoplanet sample, using photometry from Campaigns 1-8 and 10-18, derived through an entirely automated procedure. This homogeneous planet candidate catalog is crucial to perform a robust demographic analysis of transiting exoplanets with K2. We identify 747 unique planet candidates and 57 multiplanet systems. Of these candidates, 366 have not been previously identified, including one resonant multiplanet system and one system with two short-period gas giants. By automating the construction of this list, measurements of sample biases (completeness and reliability) can be quantified. We carried out a light-curve-level injection/recovery test of artificial transit signals and found a maximum completeness of 61%, a consequence of the significant detrending required for K2 data analysis. Through this operation we attained measurements of the detection efficiency as a function of signal strength, enabling future population analysis using this sample. We assessed the reliability of our planet sample by testing our vetting software EDI-Vetter against inverted transit-free light curves. We estimate that 91% of our planet candidates are real astrophysical signals, increasing up to 94% when limited to the FGKM dwarf stellar population. We also constrain the contamination rate from background eclipsing binaries to less than 5%. The presented catalog, along with the completeness and reliability measurements, enable robust exoplanet demographic studies to be carried out across the fields observed by the K2 mission for the first time.