- ID:
- ivo://CDS.VizieR/J/ApJ/765/126
- Title:
- Star spot models for M-dwarfs in NGC 2516
- Short Name:
- J/ApJ/765/126
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- By combining rotation periods with spectroscopic determinations of projected rotation velocity, Jackson et al. (2009MNRAS.399L..89J) have found that the mean radii for low-mass M-dwarfs in the young, open cluster NGC 2516 are larger than model predictions at a given absolute I magnitude or I-K color and also larger than measured radii of magnetically inactive M-dwarfs. The relative radius difference is correlated with magnitude, increasing from a few percent at M_I_=7 to greater than 50% for the lowest luminosity stars in their sample at M_I_~9.5. Jackson et al. have suggested that a two-temperature star spot model is capable of explaining the observations, but their model requires spot coverage fractions of at least 50% in rapidly rotating M-dwarfs. Here we examine these results in terms of stellar models that include the inhibiting effects of magnetic fields on convective energy transport, with and without the effects of star spots. We find that a pure spot model is inconsistent with the color-magnitude diagram. The observations of radii versus color and radii versus absolute magnitude in NGC 2516 are consistent with models which include only magnetic inhibition or a combination of magnetic inhibition and spots. At a given mass we find a large dispersion in the strength of the vertical component of the magnetic field in the stellar photosphere but the general trend is that the vertical field increases with decreasing mass from a few hundred Gauss at 0.65M_{sun}_ to 600-900G, depending on spot coverage, in the lowest mass stars in the sample at 0.25M_{sun}_.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/MNRAS/474/5158
- Title:
- Stars with hot Jupiter exoplanets
- Short Name:
- J/MNRAS/474/5158
- Date:
- 07 Dec 2021 00:40:26
- Publisher:
- CDS
- Description:
- We present a grid of forward model transmission spectra, adopting an isothermal temperature-pressure profile, alongside corresponding equilibrium chemical abundances for 117 observationally significant hot exoplanets (equilibrium temperatures of 547-2710K). This model grid has been developed using a 1D radiative-convective-chemical equilibrium model termed ATMO, with up-to-date high-temperature opacities. We present an interpretation of observations of 10 exoplanets, including best-fitting parameters and {chi}^2^ maps. In agreement with previous works, we find a continuum from clear to hazy/cloudy atmospheres for this sample of hot Jupiters. The data for all the 10 planets are consistent with subsolar to solar C/O ratio, 0.005 to 10 times solar metallicity and water rather than methane-dominated infrared spectra. We then explore the range of simulated atmospheric spectra for different exoplanets, based on characteristics such as temperature, metallicity, C/O ratio, haziness and cloudiness. We find a transition value for the metallicity between 10 and 50 times solar, which leads to substantial changes in the transmission spectra. We also find a transition value of C/O ratio, from water to carbon species dominated infrared spectra, as found by previous works, revealing a temperature dependence of this transition point ranging from ~0.56 to ~1-1.3 for equilibrium temperatures from ~900 to ~2600K. We highlight the potential of the spectral features of HCN and C2H2 to constrain the metallicities and C/O ratios of planets, using James Webb Space Telescope (JWST) observations. Finally, our entire grid (~460000 simulations) is publicly available and can be used directly with the JWST simulator PandExo for planning observations.
- ID:
- ivo://CDS.VizieR/J/ApJ/809/25
- Title:
- Stellar and planet properties for K2 candidates
- Short Name:
- J/ApJ/809/25
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The extended Kepler mission, K2, is now providing photometry of new fields every three months in a search for transiting planets. In a recent study, Foreman-Mackey and collaborators presented a list of 36 planet candidates orbiting 31 stars in K2 Campaign 1. In this contribution, we present stellar and planetary properties for all systems. We combine ground-based seeing-limited survey data and adaptive optics imaging with an automated transit analysis scheme to validate 21 candidates as planets, 17 for the first time, and identify 6 candidates as likely false positives. Of particular interest is K2-18 (EPIC 201912552), a bright (K=8.9) M2.8 dwarf hosting a 2.23+/-0.25 R_{earth}_ planet with T_eq_=272+/-15 K and an orbital period of 33 days. We also present two new open-source software packages which enable this analysis. The first, isochrones, is a flexible tool for fitting theoretical stellar models to observational data to determine stellar properties using a nested sampling scheme to capture the multimodal nature of the posterior distributions of the physical parameters of stars that may plausibly be evolved. The second is vespa, a new general-purpose procedure to calculate false positive probabilities and statistically validate transiting exoplanets.
- ID:
- ivo://CDS.VizieR/J/ApJ/757/112
- Title:
- Stellar diameters. II. K and M-stars
- Short Name:
- J/ApJ/757/112
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present interferometric angular diameter measurements of 21 low-mass, K- and M-dwarfs made with the CHARA Array. This sample is enhanced by adding a collection of radius measurements published in the literature to form a total data set of 33 K-M-dwarfs with diameters measured to better than 5%. We use these data in combination with the Hipparcos parallax and new measurements of the star's bolometric flux to compute absolute luminosities, linear radii, and effective temperatures for the stars. We develop empirical relations for ~K0 to M4 main-sequence stars that link the stellar temperature, radius, and luminosity to the observed (B-V), (V-R), (V-I), (V-J), (V-H), and (V-K) broadband color index and stellar metallicity [Fe/H]. These relations are valid for metallicities ranging from [Fe/H]=-0.5 to +0.1dex and are accurate to ~2%, ~5%, and ~4% for temperature, radius, and luminosity, respectively. Our results show that it is necessary to use metallicity-dependent transformations in order to properly convert colors into stellar temperatures, radii, and luminosities.
- ID:
- ivo://CDS.VizieR/J/AJ/159/193
- Title:
- Stellar parameters of ~30000 LAMOST DR1 M dwarfs
- Short Name:
- J/AJ/159/193
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- M-dwarfs are the most common type of star in the Galaxy, and because of their small size are favored targets for searches of Earth-sized transiting exoplanets. Current and upcoming all-sky spectroscopic surveys, such as the Large Sky Area Multi Fiber Spectroscopic Telescope (LAMOST), offer an opportunity to systematically determine physical properties of many more M dwarfs than has been previously possible. Here, we present new effective temperatures, radii, masses, and luminosities for 29678 M dwarfs with spectral types M0-M6 in the first data release (DR1) of LAMOST. We derived these parameters from the supervised machine-learning code, The Cannon, trained with 1388 M-dwarfs in the Transiting Exoplanet Survey Satellite Cool Dwarf Catalog that were also present in LAMOST with high signal-to-noise ratio (>250) spectra. Our validation tests show that the output parameter uncertainties are strongly correlated with the signal-to-noise of the LAMOST spectra, and we achieve typical uncertainties of 110K in T_eff_(~3%), 0.065R_{sun}_(~14%) in radius, 0.054M_{sun}_(~12%) in mass, and 0.012L_{sun}_(~20%) in luminosity. The model presented here can be rapidly applied to future LAMOST data releases, significantly extending the samples of well-characterized M dwarfs across the sky using new and exclusively data-based modeling methods.
- ID:
- ivo://CDS.VizieR/J/ApJ/750/L37
- Title:
- Stellar parameters of low-mass KOIs
- Short Name:
- J/ApJ/750/L37
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report stellar parameters for late-K and M-type planet-candidate host stars announced by the Kepler Mission. We obtained medium-resolution, K-band spectra of 84 cool (T_eff_<~4400K) Kepler Objects of Interest (KOIs) from Borucki et al (2011, Cat. J/ApJ/728/117). We identified one object as a giant (KOI 977); for the remaining dwarfs, we measured effective temperatures (T_eff_) and metallicities [M/H] using the K-band spectral indices of Rojas-Ayala et al (2012, Cat. J/ApJ/748/93). We determine the masses (M_*_) and radii (R_*_) of the cool KOIs by interpolation onto the Dartmouth evolutionary isochrones. The resultant stellar radii are significantly less than the values reported in the Kepler Input Catalog and, by construction, correlate better with T_eff_. Applying the published KOI transit parameters to our stellar radius measurements, we report new physical radii for the planet candidates. Recalculating the equilibrium temperatures of the planet-candidates assuming Earth's albedo and re-radiation fraction, we find that three of the planet-candidates are terrestrial sized with orbital semimajor axes that lie within the habitable zones of their host stars (KOI 463.01, KOI 812.03, and KOI 854.01).
- ID:
- ivo://CDS.VizieR/J/AJ/158/56
- Title:
- Stellar parameters of M and K dwarfs
- Short Name:
- J/AJ/158/56
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Empirical correlations between stellar parameters such as rotation or radius and magnetic activity diagnostics require estimates of the effective temperatures and the stellar radii. The aim of this study is to propose simple methods that can be applied to large samples of stars in order to derive estimates of the stellar parameters. Good empirical correlations between red/infrared colors (e.g., (R-I)_C_) and effective temperatures have been well established for a long time. The more recent (R-I)_C_ color-T_eff_ correlation using the data of Mann et al. (2015, J/ApJ/804/64, hereafter M15) and Boyajian et al. (2012, J/ApJ/757/112, hereafter B12) shows that this color can be applied as a temperature estimate for large samples of stars. We find that the mean scatter in T_eff_ relative to the (R-I)_C_-T_eff_ relationship of B12 and M15 data is only +/-3{sigma}=44.6 K for K dwarfs and +/-3{sigma}=39.4 K for M dwarfs. These figures are small and show that the (R-I)_C_ color can be used as a first-guess effective temperature estimator for K and M dwarfs. We derive effective temperatures for about 1910 K and M dwarfs using the calibration of (R-I)_C_ color-T_eff_ from B12 and M15 data. We also compiled T_eff_ and metallicity measurements available in the literature using the VizieR database. We determine T_eff_ for 441 stars with previously unknown effective temperatures. We also identified 21 new spectroscopic binaries and one triple system from our high-resolution spectra.
- ID:
- ivo://CDS.VizieR/J/ApJS/168/297
- Title:
- Stellar parameters of nearby cool stars
- Short Name:
- J/ApJS/168/297
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We derive detailed theoretical models for 1074 nearby stars from the SPOCS (Spectroscopic Properties of Cool Stars) Catalog. We provide a catalog of physical parameters for 1074 stars that are based on a uniform set of high-quality spectral observations, a uniform spectral reduction procedure, and a uniform set of stellar evolutionary models.
- ID:
- ivo://CDS.VizieR/J/AJ/156/217
- Title:
- Stellar properties for M dwarfs in MEarth-South
- Short Name:
- J/AJ/156/217
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Stellar rotation periods are valuable both for constraining models of angular momentum loss and for understanding how magnetic features impact inferences of exoplanet parameters. Building on our previous work in the northern hemisphere, we have used long-term, ground-based photometric monitoring from the MEarth Observatory to measure 234 rotation periods for nearby, southern hemisphere M dwarfs. Notable examples include the exoplanet hosts GJ 1132, LHS 1140, and Proxima Centauri. We find excellent agreement between our data and K2 photometry for the overlapping subset. Among the sample of stars with the highest quality data sets, we recover periods in 66%; as the length of the data set increases, our recovery rate approaches 100%. The longest rotation periods we detect are around 140 days, which we suggest represent the periods that are reached when M dwarfs are as old as the local thick disk (about 9 Gyr).
- ID:
- ivo://CDS.VizieR/J/MNRAS/475/5487
- Title:
- Stellar properties of KIC stars
- Short Name:
- J/MNRAS/475/5487
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Investigations of the origin and evolution of the Milky Way disc have long relied on chemical and kinematic identifications of its components to reconstruct our Galactic past. Difficulties in determining precise stellar ages have restricted most studies to small samples, normally confined to the solar neighbourhood. Here, we break this impasse with the help of asteroseismic inference and perform a chronology of the evolution of the disc throughout the age of the Galaxy. We chemically dissect the Milky Way disc population using a sample of red giant stars spanning out to 2 kpc in the solar annulus observed by the Kepler satellite, with the added dimension of asteroseismic ages. Our results reveal a clear difference in age between the low- and high-{alpha} populations, which also show distinct velocity dispersions in the V and W components. We find no tight correlation between age and metallicity nor [{alpha}/Fe] for the high-{alpha} disc stars. Our results indicate that this component formed over a period of more than 2 Gyr with a wide range of [M/H] and [{alpha}/Fe] independent of time. Our findings show that the kinematic properties of young {alpha}-rich stars are consistent with the rest of the high-{alpha} population and different from the low-{alpha} stars of similar age, rendering support to their origin being old stars that went through a mass transfer or stellar merger event, making them appear younger, instead of migration of truly young stars formed close to the Galactic bar.