- ID:
- ivo://CDS.VizieR/J/AJ/159/60
- Title:
- 8695 flares from 1228 stars in TESS sectors 1 & 2
- Short Name:
- J/AJ/159/60
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We perform a study of stellar flares for the 24809 stars observed with 2 minute cadence during the first two months of the Transiting Exoplanet Survey Satellite (TESS) mission. Flares may erode exoplanets' atmospheres and impact their habitability, but might also trigger the genesis of life around small stars. TESS provides a new sample of bright dwarf stars in our galactic neighborhood, collecting data for thousands of M dwarfs that might host habitable exoplanets. Here, we use an automated search for flares accompanied by visual inspection. Then, our public allesfitter code robustly selects the appropriate model for potentially complex flares via Bayesian evidence. We identify 1228 flaring stars, 673 of which are M dwarfs. Among 8695 flares in total, the largest superflare increased the stellar brightness by a factor of 16.1. Bolometric flare energies range from 10^31.0^ to 10^36.9^erg, with a median of 10^33.1^erg. Furthermore, we study the flare rate and energy as a function of stellar type and rotation period. We solidify past findings that fast rotating M dwarfs are the most likely to flare and that their flare amplitude is independent of the rotation period. Finally, we link our results to criteria for prebiotic chemistry, atmospheric loss through coronal mass ejections, and ozone sterilization. Four of our flaring M dwarfs host exoplanet candidates alerted on by TESS, for which we discuss how these effects can impact life. With upcoming TESS data releases, our flare analysis can be expanded to almost all bright small stars, aiding in defining criteria for exoplanet habitability.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/352/555
- Title:
- Fundamental parameters of stars
- Short Name:
- J/A+A/352/555
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Hipparcos mission has made it possible to constrain the positions of nearby field stars in the colour-magnitude diagram with very high accuracy. These positions can be compared with the predictions of stellar evolutionary calculations to provide information on the basic parameters of the stars: masses, radii, effective temperatures, ages, and chemical composition. The degeneracy between mass, age, and metallicity is not so large as to prevent a reliable estimate of masses, radii and effective temperatures, at least for stars of solar metallicity. The evolutionary models of Bertelli et al. (1994, Cat. <J/A+AS/106/275>) predict those parameters finely, and furthermore, the applied transformation from the theoretical log(g)-T_eff_ to the observational M_v_-B-V plane is precise enough to derive radii with an uncertainty of ~6%, masses within 8%, and Teffs within ~2% for a certain range of the stellar parameters. This is demonstrated by means of comparison with the measurements in eclipsing binaries and the InfraRed Flux Method. The application of the interpolation procedure in the theoretical isochrones to the stars within 100pc from the Sun observed with Hipparcos provides estimates for 17,219 stars included in this Table.
- ID:
- ivo://CDS.VizieR/J/AJ/155/30
- Title:
- Fundamental parameters of 87 stars from the NPOI
- Short Name:
- J/AJ/155/30
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the fundamental properties of 87 stars based on angular diameter measurements from the Navy Precision Optical Interferometer, 36 of which have not been measured previously using interferometry. Our sample consists of 5 dwarfs, 3 subgiants, 69 giants, 3 bright giants, and 7 supergiants, and span a wide range of spectral classes from B to M. We combined our angular diameters with photometric and distance information from the literature to determine each star's physical radius, effective temperature, bolometric flux, luminosity, mass, and age.
- ID:
- ivo://CDS.VizieR/J/AJ/154/259
- Title:
- Fundamental parameters of Tycho-2 & TGAS stars
- Short Name:
- J/AJ/154/259
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present bolometric fluxes and angular diameters for over 1.6 million stars in the Tycho-2 catalog (I/259), determined using previously determined empirical color-temperature and color-flux relations. We vet these relations via full fits to the full broadband spectral energy distributions for a subset of benchmark stars and perform quality checks against the large set of stars for which spectroscopically determined parameters are available from LAMOST, RAVE, and/or APOGEE. We then estimate radii for the 355502 Tycho-2 stars in our sample whose Gaia DR1 (I/337) parallaxes are precise to ~<10%. For these stars, we achieve effective temperature, bolometric flux, and angular diameter uncertainties of the order of 1%-2% and radius uncertainties of order 8%, and we explore the effect that imposing spectroscopic effective temperature priors has on these uncertainties. These stellar parameters are shown to be reliable for stars with T_eff_~<7000 K. The over half a million bolometric fluxes and angular diameters presented here will serve as an immediate trove of empirical stellar radii with the Gaia second data release, at which point effective temperature uncertainties will dominate the radius uncertainties. Already, dwarf, subgiant, and giant populations are readily identifiable in our purely empirical luminosity-effective temperature (theoretical) Hertzsprung-Russell diagrams.
- ID:
- ivo://CDS.VizieR/J/MNRAS/465/2849
- Title:
- Gaia DR1 mass-radius relation of white dwarfs
- Short Name:
- J/MNRAS/465/2849
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Gaia Data Release 1 (DR1) sample of white dwarf parallaxes is presented, including six directly observed degenerates and 46 white dwarfs in wide binaries. This data set is combined with spectroscopic atmospheric parameters to study the white dwarf mass-radius relationship (MRR). Gaia parallaxes and G magnitudes are used to derive model atmosphere-dependent white dwarf radii, which can then be compared to the predictions of a theoretical MRR. We find a good agreement between Gaia DR1 parallaxes, published effective temperatures (T_eff_) and surface gravities (logg), and theoretical MRRs. As it was the case for Hipparcos, the precision of the data does not allow for the characterization of hydrogen envelope masses. The uncertainties on the spectroscopic atmospheric parameters are found to dominate the error budget and current error estimates for well-known and bright white dwarfs may be slightly optimistic. With the much larger Gaia DR2 white dwarf sample, it will be possible to explore the MRR over a much wider range of mass, T_eff_, and spectral types.
- ID:
- ivo://CDS.VizieR/J/AJ/159/280
- Title:
- Gaia-Kepler stellar properties catalog.I. KIC stars
- Short Name:
- J/AJ/159/280
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- An accurate and precise Kepler Stellar Properties Catalog is essential for the interpretation of the Kepler exoplanet survey results. Previous Kepler Stellar Properties Catalogs have focused on reporting the best-available parameters for each star, but this has required combining data from a variety of heterogeneous sources. We present the Gaia-Kepler Stellar Properties Catalog, a set of stellar properties of 186301 Kepler stars, homogeneously derived from isochrones and broadband photometry, Gaia Data Release 2 parallaxes, and spectroscopic metallicities, where available. Our photometric effective temperatures, derived from g to Ks colors, are calibrated on stars with interferometric angular diameters. Median catalog uncertainties are 112K for Teff, 0.05dex for logg, 4% for R_*_, 7% for M_*_, 13% for {rho}_*_, 10% for L_*_, and 56% for stellar age. These precise constraints on stellar properties for this sample of stars will allow unprecedented investigations into trends in stellar and exoplanet properties as a function of stellar mass and age. In addition, our homogeneous parameter determinations will permit more accurate calculations of planet occurrence and trends with stellar properties.
- ID:
- ivo://CDS.VizieR/J/A+A/638/A145
- Title:
- GALAH survey. FGK binary stars
- Short Name:
- J/A+A/638/A145
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Binary stellar systems form a large fraction of the Galaxy's stars. They are useful as laboratories for studying the physical processes taking place within stars, and must be correctly taken into account when observations of stars are used to study the structure and evolution of the Galaxy. We present a sample of 12760 well-characterised double-lined spectroscopic binaries that are appropriate for statistical studies of the binary populations. They were detected as SB2s using a t-distributed stochastic neighbour embedding (t-SNE) classification and a cross-correlation analysis of GALAH spectra. This sample consists mostly of dwarfs, with a significant fraction of evolved stars and several dozen members of the giant branch. To compute parameters of the primary and secondary star (Teff[1,2], logg[1,2], [Fe/H], Vr[1,2], vmic[1,2], vbroad[1,2], R[1,2], and E(B-V)), we used a Bayesian approach that includes a parallax prior from Gaia DR2, spectra from GALAH, and apparent magnitudes from APASS, Gaia DR2, 2MASS, and WISE. The derived stellar properties and their distributions show trends that are expected for a population of close binaries (a<10AU) with mass ratios 0.5<=q<=1. The derived metallicity of these binary stars is statistically lower than that of single dwarf stars from the same magnitude-limited sample.
- ID:
- ivo://CDS.VizieR/J/ApJ/845/44
- Title:
- 340GHz SMA obs. of 50 nearby protoplanetary disks
- Short Name:
- J/ApJ/845/44
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a survey at subarcsecond resolution of the 340GHz dust continuum emission from 50 nearby protoplanetary disks, based on new and archival observations with the Submillimeter Array. The observed visibility data were modeled with a simple prescription for the radial surface brightness profile. The results were used to extract intuitive, empirical estimates of the emission "size" for each disk, R_eff_, defined as the radius that encircles a fixed fraction of the total continuum luminosity, L_mm_. We find a significant correlation between the sizes and luminosities, such that R_eff_{propto}L_mm_^0.5^, providing a confirmation and quantitative characterization of a putative trend that was noted previously. This correlation suggests that these disks have roughly the same average surface brightness interior to their given effective radius, ~0.2Jy/arcsec^2^ (or 8K in brightness temperature). The same trend remains, but the 0.2dex of dispersion perpendicular to this relation essentially disappears, when we account for the irradiation environment of each disk with a crude approximation of the dust temperatures based on the stellar host luminosities. We consider two (not mutually exclusive) explanations for the origin of this size-luminosity relationship. Simple models of the growth and migration of disk solids can account for the observed trend for a reasonable range of initial conditions, but only on timescales that are much shorter than the nominal ages present in the sample. An alternative scenario invokes optically thick emission concentrated on unresolved scales, with filling factors of a few tens of percent, which is perhaps a manifestation of localized particle traps.
- ID:
- ivo://CDS.VizieR/J/AJ/157/21
- Title:
- Ground-based spectroscopy of the exoplanet XO-2b
- Short Name:
- J/AJ/157/21
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Exoplanets orbiting close to their host star are expected to support a large ionosphere, which extends to larger pressures than witnessed in our solar system. These ionospheres can be investigated with ground-based transit observations of the optical signatures of alkali metals, which are the source of the ions. However, most ground-based transit spectra do not systematically resolve the wings of the features and continuum, as needed to constrain the alkali abundances. Here we present new observations and analyses of optical transit spectra that cover the Na doublet in the atmosphere of the exoplanet XO-2b. To assess the consistency of our results, observations were obtained from two separate platforms: Gemini/GMOS and Mayall/KOSMOS. To mitigate the systematic errors, we chose XO-2, because it has a binary companion of the same brightness and stellar type, which provides an ideal reference star to model Earth's atmospheric effects. We find that interpretation of the data is highly sensitive to time-varying translations along the detector, which change according to wavelength and differ between the target and reference star. It was necessary to employ a time-dependent cross-correlation to align our wavelength bins and correct for atmospheric differential refraction. This approach allows us to resolve the wings of the Na line across five wavelength bins at a resolution of ~1.6 nm and limit the abundance of Na. We obtain consistent results from each telescope with an Na amplitude of 521+/-161 and 403+/-186 ppm for GMOS and KOSMOS, respectively. The results are analyzed with a radiative transfer model that includes the effects of ionization. The data are consistent with a clear atmosphere between ~1 and 100 mbar that establishes a lower limit on Na at 0.4_-0.3_^+2^ ppm ([Na/H]=-0.64_-0.6_^+0.78^), consistent with solar. However, we cannot rule out the presence of clouds at ~10 mbar that allow for higher Na abundances, which would be consistent with the stellar metallicity measured for the host star ([Na/H]=0.485+/-0.043).
- ID:
- ivo://CDS.VizieR/J/ApJ/736/L25
- Title:
- Habitability of Kepler planetary candidates
- Short Name:
- J/ApJ/736/L25
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- This Letter outlines a simple approach to evaluate habitability of terrestrial planets by assuming different types of planetary atmospheres and using corresponding model calculations. Our approach can be applied for current and future candidates provided by the Kepler mission and other searches. The resulting uncertainties and changes in the number of planetary candidates in the habitability zone (HZ) for the Kepler 2011 February data release are discussed. To first order, the HZ depends on the effective stellar flux distribution in wavelength and time, the planet albedo, and greenhouse gas effects. We provide a simple set of parameters which can be used for evaluating future planet candidates from transit searches.