- ID:
- ivo://CDS.VizieR/J/ApJ/755/125
- Title:
- Sample of SNe Ia with z<0.25 from SDSS
- Short Name:
- J/ApJ/755/125
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We use Type Ia supernovae (SNe Ia) discovered by the Sloan Digital Sky Survey-II SN Survey to search for dependencies between SN Ia properties and the projected distance to the host-galaxy center, using the distance as a proxy for local galaxy properties (local star formation rate, local metallicity, etc.). The sample consists of almost 200 spectroscopically or photometrically confirmed SNe Ia at redshifts below 0.25. The sample is split into two groups depending on the morphology of the host galaxy. We fit light curves using both MLCS2K2 and SALT2, and determine color (A_V_, c) and light-curve shape ({Delta}, x_1_) parameters for each SN Ia, as well as its residual in the Hubble diagram. We then correlate these parameters with both the physical and the normalized distances to the center of the host galaxy and look for trends in the mean values and scatters of these parameters with increasing distance. The most significant (at the 4{sigma} level) finding is that the average fitted A_V_ from MLCS2K2 and c from SALT2 decrease with the projected distance for SNe Ia in spiral galaxies. We also find indications that supernovae (SNe) in elliptical galaxies tend to have narrower light curves if they explode at larger distances, although this may be due to selection effects in our sample. We do not find strong correlations between the residuals of the distance moduli with respect to the Hubble flow and the galactocentric distances, which indicates a limited correlation between SN magnitudes after standardization and local host metallicity.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/AJ/144/17
- Title:
- SDSS and CSP ugri photometry of 9 type Ia supernova
- Short Name:
- J/AJ/144/17
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Consistency between Carnegie Supernova Project (CSP) and SDSS-II Supernova Survey ugri measurements has been evaluated by comparing Sloan Digital Sky Survey (SDSS) and CSP photometry for nine spectroscopically confirmed Type Ia supernova observed contemporaneously by both programs. The CSP data were transformed into the SDSS photometric system. Sources of systematic uncertainty have been identified, quantified, and shown to be at or below the 0.023mag level in all bands. When all photometry for a given band is combined, we find average magnitude differences of equal to or less than 0.011mag in ugri, with rms scatter ranging from 0.043 to 0.077mag. The u-band agreement is promising, with the caveat that only four of the nine supernovae are well observed in u and these four exhibit an 0.038mag supernova-to-supernova scatter in this filter.
- ID:
- ivo://CDS.VizieR/J/AJ/135/348
- Title:
- SDSS-II SNe survey: search and follow-up
- Short Name:
- J/AJ/135/348
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Sloan Digital Sky Survey-II Supernova Survey has identified a large number of new transient sources in a 300deg^2^ region along the celestial equator during its first two seasons of a three-season campaign. Multi-band (ugriz) light curves were measured for most of the sources, which include solar system objects, galactic variable stars, active galactic nuclei, supernovae (SNe), and other astronomical transients. The imaging survey is augmented by an extensive spectroscopic follow-up program to identify SNe, measure their redshifts, and study the physical conditions of the explosions and their environment through spectroscopic diagnostics. During the survey, light curves are rapidly evaluated to provide an initial photometric type of the SNe, and a selected sample of sources are targeted for spectroscopic observations. In the first two seasons, 476 sources were selected for spectroscopic observations, of which 403 were identified as SNe. For the type Ia SNe, the main driver for the survey, our photometric typing and targeting efficiency is 90%. Only 6% of the photometric SN Ia candidates were spectroscopically classified as non-SN Ia instead, and the remaining 4% resulted in low signal-to-noise, unclassified spectra.
- ID:
- ivo://CDS.VizieR/J/MNRAS/465/1274
- Title:
- SDSS-II SN Ia BVRI photometry
- Short Name:
- J/MNRAS/465/1274
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have analysed multiband light curves of 328 intermediate-redshift (0.05<=z<0.24) Type Ia supernovae (SNe Ia) observed by the Sloan Digital Sky Survey-II Supernova Survey. The multiband light curves were parametrized by using the multiband stretch method, which can simply parametrize light-curve shapes and peak brightness without dust extinction models. We found that most of the SNe Ia that appeared in red host galaxies (u-r>2.5) do not have a broad light-curve width and the SNe Ia that appeared in blue host galaxies (u-r<2.0) have a variety of light-curve widths. The Kolmogorov-Smirnov test shows that the colour distribution of SNe Ia appearing in red/blue host galaxies is different (a significance level of 99.9 per cent). We also investigate the extinction law of host galaxy dust. As a result, we find that the value of Rv derived from SNe Ia with medium light-curve widths is consistent with the standard Galactic value, whereas the value of Rv derived from SNe Ia that appear in red host galaxies becomes significantly smaller. These results indicate that there may be two types of SNe Ia with different intrinsic colours, and that they are obscured by host galaxy dust with two different properties.
- ID:
- ivo://CDS.VizieR/J/ApJ/821/115
- Title:
- SDSS-II SN Survey: host-galaxy spectral data
- Short Name:
- J/ApJ/821/115
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Using the largest single-survey sample of Type Ia supernovae (SNe Ia) to date, we study the relationship between properties of SNe Ia and those of their host galaxies, focusing primarily on correlations with Hubble residuals (HRs). Our sample consists of 345 photometrically classified or spectroscopically confirmed SNe Ia discovered as part of the SDSS-II Supernova Survey (SDSS-SNS). This analysis utilizes host-galaxy spectroscopy obtained during the SDSS-I/II spectroscopic survey and from an ancillary program on the SDSS-III Baryon Oscillation Spectroscopic Survey that obtained spectra for nearly all host galaxies of SDSS-II SN candidates. In addition, we use photometric host-galaxy properties from the SDSS-SNS data release such as host stellar mass and star formation rate. We confirm the well-known relation between HR and host-galaxy mass and find a 3.6{sigma} significance of a nonzero linear slope. We also recover correlations between HR and host-galaxy gas-phase metallicity and specific star formation rate as they are reported in the literature. With our large data set, we examine correlations between HR and multiple host-galaxy properties simultaneously and find no evidence of a significant correlation. We also independently analyze our spectroscopically confirmed and photometrically classified SNe Ia and comment on the significance of similar combined data sets for future surveys.
- ID:
- ivo://CDS.VizieR/J/ApJ/708/661
- Title:
- SDSS-II SN Survey: SNe II-P standardization
- Short Name:
- J/ApJ/708/661
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We apply the Standardized Candle Method (SCM) for Type II Plateau supernovae (SNe II-P), which relates the velocity of the ejecta of a SN to its luminosity during the plateau, to 15 SNe II-P discovered over the three season run of the Sloan Digital Sky Survey-II Supernova Survey. The redshifts of these SNe - 0.027<z<0.144 - cover a range hitherto sparsely sampled in the literature; in particular, our SNe II-P sample contains nearly as many SNe in the Hubble flow (z>0.01) as all of the current literature on the SCM combined. We find that the SDSS SNe have a very small intrinsic I-band dispersion (0.22mag), which can be attributed to selection effects. When the SCM is applied to the combined SDSS-plus-literature set of SNe II-P, the dispersion increases to 0.29mag, larger than the scatter for either set of SNe separately. We show that the standardization cannot be further improved by eliminating SNe with positive plateau decline rates, as proposed in Poznanski et al. (2009ApJ...694.1067P). We thoroughly examine all potential systematic effects and conclude that for the SCM to be useful for cosmology, the methods currently used to determine the FeII velocity at day 50 must be improved, and spectral templates able to encompass the intrinsic variations of Type II-P SNe will be needed.
- ID:
- ivo://CDS.VizieR/J/ApJ/763/88
- Title:
- SDSS-II supernovae Ia cosmological analysis
- Short Name:
- J/ApJ/763/88
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the cosmological analysis of 752 photometrically classified Type Ia Supernovae (SNe Ia) obtained from the full Sloan Digital Sky Survey II (SDSS-II) Supernova (SN) Survey, supplemented with host-galaxy spectroscopy from the SDSS-III Baryon Oscillation Spectroscopic Survey. Our photometric-classification method is based on the SN classification technique of Sako et al. (2011, Cat. J/ApJ/738/162), aided by host-galaxy redshifts (0.05<z<0.55). SuperNova ANAlysis simulations of our methodology estimate that we have an SN Ia classification efficiency of 70.8%, with only 3.9% contamination from core-collapse (non-Ia) SNe. We demonstrate that this level of contamination has no effect on our cosmological constraints. We quantify and correct for our selection effects (e.g., Malmquist bias) using simulations. When fitting to a flat {Lambda}CDM cosmological model, we find that our photometric sample alone gives {Omega}_m_=0.24^+0.07^_-0.05_ (statistical errors only). If we relax the constraint on flatness, then our sample provides competitive joint statistical constraints on {Omega}_m_ and {Omega}_{Lambda}_, comparable to those derived from the spectroscopically confirmed Three-year Supernova Legacy Survey (SNLS3). Using only our data, the statistics-only result favors an accelerating universe at 99.96% confidence. Assuming a constant wCDM cosmological model, and combining with H_0_, cosmic microwave background, and luminous red galaxy data, we obtain w=-0.96^+0.10^_-0.10_, {Omega}_m_=0.29^+0.02^_-0.02_, and {Omega}_k_=0.00^+0.03^_-0.02_ (statistical errors only), which is competitive with similar spectroscopically confirmed SNe Ia analyses. Overall this comparison is reassuring, considering the lower redshift leverage of the SDSS-II SN sample (z<0.55) and the lack of spectroscopic confirmation used herein. These results demonstrate the potential of photometrically classified SN Ia samples in improving cosmological constraints.
- ID:
- ivo://CDS.VizieR/J/A+A/526/A28
- Title:
- SDSS-II supernovae NTT and NOT spectroscopy
- Short Name:
- J/A+A/526/A28
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Sloan Digital Sky Survey II (SDSS-II) Supernova Survey, conducted between 2005 and 2007, was designed to detect a large number of type Ia supernovae around z~0.2, the redshift "gap" between low-z and high-z supernova searches. The survey has provided multi-band (ugriz) photometric lightcurves for variable targets, and supernova candidates were scheduled for spectroscopic observations, primarily to provide supernova classification and accurate redshifts. We present supernova spectra obtained in 2006 and 2007 using the New Technology Telescope (NTT) and the Nordic Optical Telescope (NOT). We provide an atlas of supernova spectra in the range z=0.03-0.32 that complements the well-sampled lightcurves from SDSS-II in the forthcoming three-year SDSS supernova cosmology analysis. The sample can, for example, be used for spectral studies of type Ia supernovae, which are critical for understanding potential systematic effects when supernovae are used to determine cosmological distances. The spectra were reduced in a uniform manner, and special care was taken in estimating the uncertainties for the different processing steps. Host-galaxy light was subtracted when possible and the supernova type fitted using the SuperNova IDentification code (SNID). We also present comparisons between spectral and photometric dating using SALT lightcurve fits to the photometry from SDSS-II, as well as the global distribution of our sample in terms of the lightcurve parameters: stretch and colour.
- ID:
- ivo://CDS.VizieR/J/AJ/136/2306
- Title:
- SDSS-II Supernova survey, 2005
- Short Name:
- J/AJ/136/2306
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present ugriz light curves for 146 spectroscopically-confirmed or spectroscopically-probable Type Ia supernovae (SNe) from the 2005 season of the Sloan Digital Sky Survey-II Supernova (SN) survey. The light curves have been constructed using a photometric technique that we call scene modeling, which is described in detail here; the major feature is that SN brightnesses are extracted from a stack of images without spatial resampling or convolution of the image data. This procedure produces accurate photometry along with accurate estimates of the statistical uncertainty, and can be used to derive photometry taken with multiple telescopes. We discuss various tests of this technique that demonstrate its capabilities. We also describe the methodology used for the calibration of the photometry, and present calibrated magnitudes and fluxes for all of the spectroscopic SNe Ia from the 2005 season.
- ID:
- ivo://CDS.VizieR/J/other/Sci/348.413
- Title:
- Sgr A East SNR multiwavelength images
- Short Name:
- J/other/Sci/348.
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Dust formation in supernova ejecta is currently the leading candidate to explain the large quantities of dust observed in the distant, early universe. However, it is unclear whether the ejecta-formed dust can survive the hot interior of the supernova remnant (SNR). We present infrared observations of ~0.02 solar masses of warm (~100 kelvin) dust seen near the center of the ~10,000-year-old Sagittarius A East SNR at the Galactic center. Our findings indicate the detection of dust within an older SNR that is expanding into a relatively dense surrounding medium (electron density ~10^3^ centimeters^-3^) and has survived the passage of the reverse shock. The results suggest that supernovae may be the dominant dust-production mechanism in the dense environment of galaxies of the early universe.