We present the first results from the Distant Radio Galaxies Optically Non-detected in the SDSS (DRaGONS) survey. Using a novel selection technique for identifying high-redshift radio galaxy (HzRG) candidates, a large sample is compiled using bright (S_1.4GHz_>100mJy) radio sources from the FIRST survey having no optical counterpart in the SDSS. Near-IR K-band imaging for 96 targets allows preliminary identification of HzRG candidates through the well-known K-z relation, for subsequent spectroscopic observation. We measure magnitudes brighter than K~19.5 for 70 of the 96, and limiting magnitudes for the remainder. Redshifts based on a linear fit to the K-z diagram give a mean <z>=2.5 and median z=2.0, showing that this method should be efficient at identifying a large number of HzRGs.
We introduce the Disk Substructures at High Angular Resolution Project (DSHARP), one of the initial large programs conducted with the Atacama Large Millimeter/submillimeter Array (ALMA). The primary goal of DSHARP is to find and characterize substructures in the spatial distributions of solid particles for a sample of 20 nearby protoplanetary disks, using very high resolution (~0.035", or 5au, Full width half maximum (FWHM)) observations of their 240GHz (1.25mm) continuum emission. These data provide a first homogeneous look at the small-scale features in disks that are directly relevant to the planet formation process, quantifying their prevalence, morphologies, spatial scales, spacings, symmetry, and amplitudes, for targets with a variety of disk and stellar host properties. We find that these substructures are ubiquitous in this sample of large, bright disks. They are most frequently manifested as concentric, narrow emission rings and depleted gaps, although large-scale spiral patterns and small arc-shaped azimuthal asymmetries are also present in some cases. These substructures are found at a wide range of disk radii (from a few astronomical units to more than 100au), are usually compact (<=10au), and show a wide range of amplitudes (brightness contrasts). Here we discuss the motivation for the project, describe the survey design and the sample properties, detail the observations and data calibration, highlight some basic results, and provide a general overview of the key conclusions that are presented in more detail in a series of accompanying articles.
Debris discs are a consequence of the planet formation process and constitute the fingerprints of planetesimal systems. Their solar system's counterparts are the asteroid and Edgeworth-Kuiper belts. The Herschel Open Time Key Programme DUNES (DUst around NEarby Stars) survey aims at detecting extra-solar analogues to the Edgeworth-Kuiper belt around solar-type stars, putting in this way the solar system into context. We used Herschel/PACS to observe a sample of nearby FGK stars. Data at 100 and 160 micron were obtained, complemented in some cases with observations at 70 micron, and at 250, 350 and 500 micron using SPIRE. The paper provides a detailed description of the observational results of the survey.
The Great Observatories All-sky LIRG Survey (GOALS) is a comprehensive, multiwavelength study of luminous infrared galaxies (LIRGs) in the local universe. Here, we present the results of a multi-component, spectral decomposition analysis of the low-resolution mid-infrared (MIR) Spitzer Infrared Spectrograph spectra from 5-38 {mu}m of 244 LIRG nuclei. The detailed fits and high-quality spectra allow for characterization of the individual polycyclic aromatic hydrocarbon (PAH) features, warm molecular hydrogen emission, and optical depths for both silicate dust grains and water ices. We find that starbursting LIRGs, which make up the majority of the GOALS sample, are very consistent in their MIR properties (i.e., {tau}_9.7 {mu}m_, {tau}_ice_, neon line ratios, and PAH feature ratios). However, as their EQW_6.2 {mu}m_decreases, usually an indicator of an increasingly dominant active galactic nucleus (AGN), LIRGs cover a larger spread in these MIR parameters. The contribution from PAH emission to the total IR luminosity (L(PAH)/L(IR)) in LIRGs varies from 2%-29% and LIRGs prior to their first encounter show significantly higher L(PAH)/L(IR) ratios on average. We observe a correlation between the strength of the starburst (represented by IR8 = L_IR_/L_8 {mu}m_) and the PAH fraction at 8 {mu}m but no obvious link between IR8 and the 7.7 to 11.3 PAH ratio, suggesting that the fractional photodissociation region (PDR) emission, and not the overall grain properties, is associated with the rise in IR8 for galaxies off the starburst main sequence. We detect crystalline silicate features in ~6% of the sample but only in the most obscure sources (s_9.7 {mu}m_< -1.24). Ice absorption features are observed in ~11% (56%) of GOALS LIRGs (ULIRGs) in sources with a range of silicate depths. Most GOALS LIRGs have L(H_2_)/L(PAH) ratios elevated above those observed for normal star-forming galaxies and exhibit a trend for increasing L(H_2_)/L(PAH) ratio with increasing L(H_2_). While star formation appears to be the dominant process responsible for exciting the H_2_ in most of the GOALS galaxies, a subset of LIRGs (~10%) shows excess H_2_emission that is inconsistent with PDR models and may be excited by shocks or AGN-induced outflows.
We use Wide-field Infrared Survey Explorer (WISE), AKARI, and Galaxy Evolution Explorer (GALEX) data to select local analogs of high-redshift (z~2) dust obscured galaxies (DOGs). We identify 47 local DOGs with S_12{mu}m_/S_0.22{mu}m_>=892 and S_12{mu}m_>20mJy at 0.05<z<0.08 in the Sloan Digital Sky Survey data release 7. The infrared (IR) luminosities of these DOGs are in the range 3.4x10^10^(L_{sun}_)<~L_IR_<~7.0x10^11^(L_{sun}_) with a median L_IR_ of 2.1x10^11^(L_{sun}_). We compare the physical properties of local DOGs with a control sample of galaxies that have lower S_12{mu}m_/S_0.22{mu}m_ but have similar redshift, IR luminosity, and stellar mass distributions. Both WISE 12{mu}m and GALEX near-ultraviolet (NUV) flux densities of DOGs differ from the control sample of galaxies, but the difference is much larger in the NUV. Among the 47 DOGs, 36%+/-7% have small axis ratios in the optical (i.e., b/a<0.6), larger than the fraction among the control sample (17%+/-3%). There is no obvious sign of interaction for many local DOGs. No local DOGs have companions with comparable optical magnitudes closer than ~50kpc. The large- and small-scale environments of DOGs are similar to the control sample. Many physical properties of local DOGs are similar to those of high-z DOGs, even though the IR luminosities of local objects are an order of magnitude lower than for the high-z objects: the presence of two classes (active galactic nuclei- and star formation-dominated) of DOGs, abnormal faintness in the UV rather than extreme brightness in the mid-IR, and diverse optical morphology. These results suggest a common underlying physical origin of local and high-z DOGs. Both seem to represent the high-end tail of the dust obscuration distribution resulting from various physical mechanisms rather than a unique phase of galaxy evolution.
We report the discovery of 158 previously undetected dwarf galaxies in the Fornax cluster central regions using a deep coadded u-, g-, and i-band image obtained with the Dark Energy Camera wide-field camera mounted on the 4-m Blanco telescope at the Cerro Tololo Interamerican Observatory as part of the Next Generation Fornax Survey (NGFS). The new dwarf galaxies have quasi-exponential light profiles, effective radii 0.1<r_e_<2.8kpc, and average effective surface brightness values 22.0<{mu}_i_<28.0mag/arcsec2. We confirm the existence of ultra-diffuse galaxies (UDGs) in the Fornax core regions that resemble counterparts recently discovered in the Virgo and Coma galaxy clusters. We also find extremely low surface brightness NGFS dwarfs, which are several magnitudes fainter than the classical UDGs. The faintest dwarf candidate in our NGFS sample has an absolute magnitude of M_i_=-8.0mag. The nucleation fraction of the NGFS dwarf galaxy sample appears to decrease as a function of their total luminosity, reaching from a nucleation fraction of >75% at luminosities brighter than M_i_~=-15.0mag to 0% at luminosities fainter than M_i_~=-10.0mag. The two-point correlation function analysis of the NGFS dwarf sample shows an excess on length scales below ~100 kpc, pointing to the clustering of dwarf galaxies in the Fornax cluster core.
We present the results of an all-sky, deep optical survey for faint Local Group dwarf galaxies. Candidate objects were selected from the second Palomar Observatory Sky Survey and ESO/Science Research Council survey plates, and follow-up observations were performed to determine whether they were indeed overlooked members of the Local Group. Only two galaxies (Antlia and Cetus) were discovered this way out of 206 candidates. Based on internal and external comparisons, we estimate that our visual survey is more than 77% complete for objects larger than 1' in size and with a surface brightness greater than an extremely faint limit over the 72% of the sky not obstructed by the Milky Way.
A sample of 70 E+A galaxies is selected from 37206 galaxies in the second data release of the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST). This sample is selected according to the criteria for E+A galaxies defined by Goto, and each of these objects is further visually identified. In this sample, most objects are low redshift E+A galaxies with z<0.25, and are located in an area of the sky with high Galactic latitude and magnitude from 14 to 18mag in the g, r and i bands. A stellar population analysis of the whole sample indicates that the E+A galaxies are characterized by both young and old stellar populations (SPs), and the metal-rich SPs have relatively higher contributions than the metal-poor ones. Additionally, a morphological classification of these objects is performed based on images taken from the Sloan Digital Sky Survey.
This paper presents results from a continuum radio survey of a complete sample of 248 southern E and S0 galaxies. All the galaxies were observed at 2.7GHz (11cm) with the Parkes radio telescope, and those detected were reobserved at 5.0 GHz (6 cm). Thirty-seven galaxies were detected above a level of 25-30mJy, and a consideration of the background source density at 2.7GHz indicates that no more than two or three of these detections are due to background sources.
The Effelsberg-Bonn HI Survey (EBHIS) is a new 21-cm survey performed with the 100-m telescope at Effelsberg. It covers the whole northern sky out to a redshift of z~0.07 and comprises HI line emission from the Milky Way and the Local Volume. We aim to substitute the northern-hemisphere part of the Leiden/Argentine/Bonn Milky Way HI survey (LAB) with this first EBHIS data release, which presents the HI gas in the Milky Way regime. The use of a seven-beam L-band array made it feasible to perform this all-sky survey with a 100-m class telescope in a reasonable amount of observing time. State-of-the-art fast-Fourier-transform spectrometers provide the necessary data read-out speed, dynamic range, and spectral resolution to apply software radio-frequency interference mitigation. EBHIS is corrected for stray radiation and employs frequency-dependent flux-density calibration and sophisticated baseline-removal techniques to ensure the highest possible data quality. Detailed analyses of the resulting data products show that EBHIS is not only outperforming LAB in terms of sensitivity and angular resolution, but also matches the intensity-scale of LAB extremely well, allowing EBHIS to be used as a drop-in replacement for LAB. Data products are made available to the public in a variety of forms. Most important, we provide a properly gridded Milky Way HI column density map in HEALPix representation. To maximize the usefulness of EBHIS data, we estimate uncertainties in the HI column density and brightness temperature distributions, accounting for systematic effects.