- ID:
- ivo://CDS.VizieR/J/A+A/476/73
- Title:
- Calibration of Cepheid Period/Luminosity relation
- Short Name:
- J/A+A/476/73
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The universality of the Cepheid period-luminosity (PL) relations has been under discussion since metallicity effects were assumed to play a role in the value of the intercept and, more recently, of the slope of these relations. The goal of the present study is to calibrate the Galactic PL relations in various photometric bands (from B to K) and to compare the results to the well-established PL relations in the LMC. We use a set of 59 calibrating stars, the distances of which are measured using five different distance indicators: Hubble Space Telescope and revised Hipparcos parallaxes, infrared surface brightness and interferometric Baade-Wesselink parallaxes, and classical Zero-Age-Main-Sequence-fitting parallaxes for Cepheids belonging to open clusters or OB stars associations. A detailed discussion of absorption corrections and projection factor to be used is given.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/339/858
- Title:
- Calibration of stellar parameters
- Short Name:
- J/A+A/339/858
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The results of calibration of the surface brightness, bolometric flux and effective temperature scales are presented for 537 dwarfs and giants selected as standards for the Infrared Space Observatory (ISO). Individual temperatures with small model-dependent corrections are derived at the target accuracy of 1%. The comparison with semiempirical values achieved by the Infrared Flux Method (IRFM) shows consistent results within the 1% level for F, G and K stars, but not for A-type stars.
- ID:
- ivo://CDS.VizieR/J/A+A/433/1155
- Title:
- Calibrator stars for 200m baseline interferometry
- Short Name:
- J/A+A/433/1155
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a catalog of reference stars suitable for calibrating infrared interferometric observations. In the K band, visibilities can be calibrated with a precision of 1% on baselines up to 200 meters for the whole sky, and up to 300 meters for some part of the sky. This work, extending to longer baselines a previous catalog compiled by Borde et al. (2002, Cat. <J/A+A/393/183>), is particularly well adapted to hectometric-class interferometers. We use the absolute spectro-photometric calibration method introduced by Cohen et al. (1999AJ....117.1864C) to derive the angular diameters of our new set of stars.
- ID:
- ivo://CDS.VizieR/J/AJ/154/108
- Title:
- California-Kepler Survey (CKS). II. Properties
- Short Name:
- J/AJ/154/108
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present stellar and planetary properties for 1305 Kepler Objects of Interest hosting 2025 planet candidates observed as part of the California-Kepler Survey. We combine spectroscopic constraints, presented in Paper I, with stellar interior modeling to estimate stellar masses, radii, and ages. Stellar radii are typically constrained to 11%, compared to 40% when only photometric constraints are used. Stellar masses are constrained to 4%, and ages are constrained to 30%. We verify the integrity of the stellar parameters through comparisons with asteroseismic studies and Gaia parallaxes. We also recompute planetary radii for 2025 planet candidates. Because knowledge of planetary radii is often limited by uncertainties in stellar size, we improve the uncertainties in planet radii from typically 42% to 12%. We also leverage improved knowledge of stellar effective temperature to recompute incident stellar fluxes for the planets, now precise to 21%, compared to a factor of two when derived from photometry.
- ID:
- ivo://CDS.VizieR/J/AJ/156/264
- Title:
- California-Kepler Survey. VII. Planet radius gap
- Short Name:
- J/AJ/156/264
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The distribution of planet sizes encodes details of planet formation and evolution. We present the most precise planet size distribution to date based on Gaia parallaxes, Kepler photometry, and spectroscopic temperatures from the California-Kepler Survey. Previously, we measured stellar radii to 11% precision using high-resolution spectroscopy; by adding Gaia astrometry, the errors are now 3%. Planet radius measurements are, in turn, improved to 5% precision. With a catalog of ~1000 planets with precise properties, we probed in fine detail the gap in the planet size distribution that separates two classes of small planets, rocky super-Earths and gas-dominated sub-Neptunes. Our previous study and others suggested that the gap may be observationally under-resolved and inherently flat-bottomed, with a band of forbidden planet sizes. Analysis based on our new catalog refutes this; the gap is partially filled in. Two other important factors that sculpt the distribution are a planet's orbital distance and its host-star mass, both of which are related to a planet's X-ray/UV irradiation history. For lower-mass stars, the bimodal planet distribution shifts to smaller sizes, consistent with smaller stars producing smaller planet cores. Details of the size distribution including the extent of the "sub-Neptune desert" and the width and slope of the gap support the view that photoevaporation of low-density atmospheres is the dominant evolutionary determinant of the planet size distribution.
- ID:
- ivo://CDS.VizieR/J/ApJ/791/58
- Title:
- C and O abundances across the Hertzsprung gap
- Short Name:
- J/ApJ/791/58
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We derived atmospheric parameters and spectroscopic abundances for C and O for a large sample of stars located in the Hertzsprung gap in the Hertzsprung-Russell diagram in order to detect chemical peculiarities and get a comprehensive overview of the population of stars in this evolutionary state. We have observed and analyzed high-resolution spectra (R = 60,000) of 188 stars in the mass range 2-5 M_{sun}_ with the 2.7 m Harlan J. Smith Telescope at the McDonald Observatory including 28 stars previously identified as Am/Ap stars. We find that the C and O abundances of the majority of stars in the Hertzsprung gap are in accordance with abundances derived for local lower-mass dwarfs but detect expected peculiarities for the Am/Ap stars. The C and O abundances of stars with T_eff_< 6500 K are slightly lower than for the hotter objects but the C/O ratio is constant in the analyzed temperature domain. No indication of an alteration of the C and O abundances of the stars by mixing during the evolution across the Hertzsprung gap could be found before the homogenization of their atmospheres by the first dredge-up.
- ID:
- ivo://CDS.VizieR/J/ApJ/883/8
- Title:
- Cand. young OB stars from GALEX & Gaia DR2
- Short Name:
- J/ApJ/883/8
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We combine Galaxy Evolution Explorer and Gaia DR2 catalogs to track star formation in the outskirts of our Galaxy. Using photometry, proper motions, and parallaxes we identify a structure of ~300 OB-type candidates located between 12 and 15kpc from the Galactic center that are kinematically cold. The structure is located between l=120{deg} and 200{deg}, above the plane up to ~700pc and below the plane to ~1kpc. The bulk motion is disklike; however, we measure a mean upward vertical motion of 5.7+/-0.4km/s, and a mean outward radial motion of between 8 and 16km/s. The velocity dispersion along the least dispersed of its proper-motion axes (perpendicular to the Galactic disk) is 6.0+/-0.3km/s, confirming the young age of this structure. While spatially encompassing the outer spiral arm of the Galaxy, this structure is not a spiral arm. Its explanation as the Milky Way warp is equally unsatisfactory. The structure's vertical extent, mean kinematics, and asymmetry with respect to the plane indicate that its origin is more akin to a wobble generated by a massive satellite perturbing the Galaxy's disk. The mean stellar ages in this outer structure indicate the event took place some 200Myr ago.
- ID:
- ivo://CDS.VizieR/J/A+A/657/A87
- Title:
- CASCADES I. Sample definition and first results
- Short Name:
- J/A+A/657/A87
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- Following the first discovery of a planet orbiting a giant star in 2002, we started the CORALIE radial-velocity search for companions around evolved stars (CASCADES). We present the observations of three stars conducted at the 1.2m Leonard Euler Swiss telescope at La Silla Observatory, Chile, using the CORALIE spectrograph. We aim to detect planetary companions to intermediate-mass G- and K- type evolved stars and perform a statistical analysis of this population. We searched for new planetary systems around the stars HD22532 (TIC200851704), HD64121 (TIC264770836), and HD69123 (TIC146264536). We have followed a volume-limited sample of 641 red giants since 2006 to obtain high-precision radial-velocity measurements. We used the Data & Analysis Center for Exoplanets (DACE) platform to perform a radial-velocity analysis to search for periodic signals in the line profile and activity indices, to distinguish between planetary-induced radial-velocity variations and stellar photospheric jitter, and to search for significant signals in the radial-velocity time series to fit a corresponding Keplerian model. In this paper, we present the survey in detail, and we report on the discovery of the first three planets of the sample around the giant stars HD22532, HD64121, and HD69123.
- ID:
- ivo://CDS.VizieR/J/AJ/159/198
- Title:
- Cataclysmic variables in the ZTF 1st-yr (2018-2019)
- Short Name:
- J/AJ/159/198
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Using selection criteria based on amplitude, time, and color, we have identified 329 objects as known or candidate cataclysmic variables (CVs) during the first year of testing and operation of the Zwicky Transient Facility. Of these, 90 are previously confirmed CVs, 218 are strong candidates based on the shape and color of their light curves obtained during 3-562days of observation, and the remaining 21 are possible CVs but with too few data points to be listed as good candidates. Almost half of the strong candidates are within 10{deg} of the galactic plane, in contrast to most other large surveys that have avoided crowded fields. The available Gaia parallaxes are consistent with sampling the low mass transfer CVs, as predicted by population models. Our follow-up spectra have confirmed Balmer/helium emission lines in 27 objects, with four showing high-excitation HeII emission, including candidates for an AM CVn, a polar, and an intermediate polar. Our results demonstrate that a complete survey of the Galactic plane is needed to accomplish an accurate determination of the number of CVs existing in the Milky Way.
- ID:
- ivo://CDS.VizieR/J/AJ/162/94
- Title:
- Cataclysmic variables in ZTF 2nd year
- Short Name:
- J/AJ/162/94
- Date:
- 09 Mar 2022 22:00:00
- Publisher:
- CDS
- Description:
- Using a filter in the GROWTH Marshal based on color and the amplitude and timescale of variability, we have identified 372 objects as known or candidate cataclysmic variables (CVs) during the second year of the operation of the Zwicky Transient Facility. From the available difference imaging data, we found that 93 are previously confirmed CVs and 279 are strong candidates. Spectra of four of the candidates confirm them as CVs by the presence of Balmer emission lines, while one of the four has prominent HeII lines indicative of containing a magnetic white dwarf. Gaia EDR3 parallaxes are available for 154 of these systems, resulting in distances from 108-2096pc and absolute magnitudes in the range of 7.5-15.0, with the largest number of candidates between 10.5 and 12.5. The total numbers are 21% higher than from the previous year of the survey with a greater number of distances available but a smaller percentage of systems close to the Galactic plane. Comparison of these findings with a machine-learning method of searching all the light curves reveals large differences in each data set related to the parameters involved in the search process.