- ID:
- ivo://CDS.VizieR/J/A+A/650/A156
- Title:
- Cluster formation toward Be87/ON2. I.
- Short Name:
- J/A+A/650/A156
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- Disentangling line-of-sight alignments of young stellar populations is crucial for observational studies of star-forming complexes. This task is particularly problematic in a Cygnus-X subregion where several components, located at different distances, overlap: the Berkeley 87 young massive cluster, the poorly known [DB2001] Cl05 embedded cluster, and the ON2 star-forming complex, which in turn is composed of several HII regions. We provide a methodology for building an exhaustive census of young objects that can consistently treat large differences in extinction and distance. OMEGA2000 near-infrared observations of the Berkeley 87 / ON2 field were merged with archival data from Gaia, Chandra, Spitzer, and Herschel, and with cross-identifications from the literature. To address the incompleteness effects and selection biases that arise from the line-of-sight overlap, we adapted existing methods for extinction estimation and young object classification. We also defined the intrinsic reddening index, R_int_, a new tool for separating intrinsically red sources from those whose infrared color excess is caused by extinction. Finally, we introduce a new method for finding young stellar objects based on R_int_. We find 571 objects whose classification is related to recent or ongoing star formation. Together with other point sources with individual estimates of distance or extinction, we compile a catalog of 3005 objects to be used for further membership work. A new distance for Berkeley 87, (1673+/-17)pc, is estimated as a median of 13 spectroscopic members with accurate Gaia EDR3 parallaxes. The flexibility of our approach, especially regarding the R_int_ definition, allows overcoming photometric biases caused by large variations in extinction and distance, in order to obtain homogeneous catalogs of young sources. The multiwavelength census that results from applying our methods to the Berkeley 87 / ON2 field will serve as a basis for disentangling the overlapped populations.
Number of results to display per page
Search Results
52. Clusterix 2.0
- ID:
- ivo://CDS.VizieR/J/MNRAS/492/5811
- Title:
- Clusterix 2.0
- Short Name:
- J/MNRAS/492/5811
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Clusterix 2.0 is a web-based, Virtual Observatory compliant, interactive tool for the determination of membership probabilities in stellar clusters based on proper-motion data using a fully non-parametric method. In an area occupied by a cluster, the frequency function is made up of two contributions: cluster and field stars. The tool performs an empirical determination of the frequency functions from the vector point diagram without relying on any previous assumption about their profiles. Clusterix 2.0 allows us to search the appropriate spatial areas in an interactive way until an optimal separation of the two populations is obtained. Several parameters can be adjusted to make the calculation computationally feasible without interfering with the quality of the results. The system offers the possibility to query different catalogues, such as Gaia, or upload a user's own data. The results of the membership determination can be sent via Simple Application Messaging Protocol (SAMP) to Virtual Observatory (VO) tools such as Tool for OPerations on Catalogues And Tables (TOPCAT). We apply Clusterix 2.0 to several open clusters with different properties and environments to show the capabilities of the tool: an area of five degrees radius around NGC 2682 (M67), an old, well-known cluster; a young cluster NGC 2516 with a striking elongated structure extended up to four degrees; NGC 1750 and NGC 1758, a pair of partly overlapping clusters; the area of NGC 1817, where we confirm a little-known cluster, Juchert 23; and an area with many clusters, where we disentangle two overlapping clusters situated where only one was previously known: Ruprecht 26 and the new Clusterix 1.
- ID:
- ivo://CDS.VizieR/J/ApJ/877/12
- Title:
- Coma Ber and a Neighbor Stellar Group tidal tails
- Short Name:
- J/ApJ/877/12
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report the discovery of tidal structures around the intermediate-aged (~700-800Myr), nearby (~85pc) star cluster Coma Berenices. The spatial and kinematic grouping of stars is determined with the Gaia DR2 parallax and proper motion data, by a clustering analysis tool, StarGO, to map 5D parameters (X, Y, Z, {mu}_{alpha}*cos{delta}, {mu}_{delta}_) onto a 2D neural network. A leading and a trailing tails, each with an extension of ~50pc are revealed for the first time around this disrupting star cluster. The cluster members, totaling to ~115^+5^_-3_M_{sun}_, are clearly mass segregated, and exhibit a flat mass function with {alpha}~0.79+/-0.16, in the sense of dN/dm{prop.to}m^-{alpha}^, where N is the number of member stars and m is stellar mass, in the mass range of m=0.25-2.51M_{sun}_. Within the tidal radius of ~6.9pc, there are 77 member candidates with an average position, i.e., as the cluster center, of RA=186.8110{deg}, and DE=25.8112{deg}, and an average distance of 85.8pc. Additional 120 member candidates reside in the tidal structures, i.e., outnumbering those in the cluster core. The expansion of escaping members lead to an anisotropy in the velocity field of the tidal tails. Our analysis also serendipitously uncovers an adjacent stellar group, part of which has been cataloged in the literature. We identify 218 member candidates, 10 times more than previously known. This star group is some 65pc away from, and ~400Myr younger than, Coma Ber, but is already at the final stage of disruption.
- ID:
- ivo://CDS.VizieR/J/AJ/136/2483
- Title:
- Comoving group associated with HD 141569
- Short Name:
- J/AJ/136/2483
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the results of a search for a young stellar moving group associated with the star HD 141569 - a nearby, isolated Herbig AeBe primary member of a 5+/-3Myr-old triple star system on the outskirts of the Sco-Cen complex. Our spectroscopic survey identified a population of 21 Li-rich, >~30Myr-old stars within 30{deg} of HD 141569 which possess similar proper motions with the star. The spatial distribution of these Li-rich stars, however, is not suggestive of a moving group associated with the HD 141569 triplet, but rather this sample appears cospatial with Upper Scorpius (US) and Upper Centaurus Lupus (UCL). We apply a modified moving cluster parallax method to compare the kinematics of these youthful stars with those of the US and UCL. Eight new potential members of US and five new potential members of UCL are identified. A substantial moving group with an identifiable nucleus within 15{deg} (~30pc) of HD 141569 is not found in this sample. Evidently, the HD 141569 system formed ~5Myr ago in relative isolation, tens of parsecs away from the recent sites of star formation in the Ophiucus-Scorpius-Centaurus region.
- ID:
- ivo://CDS.VizieR/J/A+A/450/681
- Title:
- Companions to close spectroscopic binaries
- Short Name:
- J/A+A/450/681
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have surveyed a sample of 165 solar-type spectroscopic binaries (SB) with periods from 1 to 30 days for higher-order multiplicity. 62 targets have been observed with the NACO adaptive optics system and 13 new physical tertiary companions were detected. Another 12 new wide companions (5 still tentative) were retrieved from the 2MASS (<II/246>) sky survey. Our binaries belong to 161 stellar systems; of these 64 are triple, 11 quadruple and 7 quintuple. After correction for incomplete detection, the fraction of SBs with additional companions is 63+/-5%. We find that this fraction is a strong function of the SB period P, reaching 96% for P<3d and dropping to 36% for P>12d. Period distributions of SBs with and without tertiaries are significantly different, but their mass ratio distributions are identical. New statistical data on the multiplicity of close SBs indicate that their periods and mass ratios were established very early, but periods of SBs within triples were further shortened by angular momentum exchange with companions.
- ID:
- ivo://CDS.VizieR/J/AJ/160/131
- Title:
- Compilation of 289 eclipsing binaries parameters
- Short Name:
- J/AJ/160/131
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We investigate directly imaging exoplanets around eclipsing binaries using the eclipse as a natural tool for dimming the binary and thus increasing the planet to star brightness contrast. At eclipse, the binary becomes pointlike, making coronagraphy possible. We select binaries where the planet-star contrast would be boosted by >10x during eclipse, making it possible to detect a planet that is >~10x fainter or in a star system that is ~2-3x more massive than otherwise. Our approach will yield insights into planet occurrence rates around binaries versus individual stars. We consider both self-luminous (SL) and reflected light (RL) planets. In the SL case, we select binaries whose age is young enough so that an orbiting SL planet would remain luminous; in U Cep and AC Sct, respectively, our method is sensitive to SL planets of ~4.5 and ~9 M_J_ with current ground- or near-future space-based instruments and ~1.5 and ~6 M_J_ with future ground-based observatories. In the RL case, there are three nearby (<~50 pc) systems-V1412 Aql, RR Cae, and RT Pic-around which a Jupiter-like planet at a planet-star separation of >~20mas might be imaged with future ground- and space-based coronagraphs. A Venus-like planet at the same distance might be detectable around RR Cae and RT Pic. A habitable Earth-like planet represents a challenge; while the planet-star contrast at eclipse and planet flux are accessible with a 6-8m space telescope, the planet-star separation is 1/3-1/4 of the angular separation limit of modern coronagraphy.
- ID:
- ivo://CDS.VizieR/J/A+A/384/145
- Title:
- Compiled catalog of Per OB2 star forming complex
- Short Name:
- J/A+A/384/145
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Compiled Catalogue (CC) is a photometric and astrometric survey with the center at (RA, DE)_J2000 = (3.86h, 34.6{deg}) and radius of 10 degrees of a nearby region of star formation including the Per OB2 association. The CC is based on recently published astronomical catalogues, e.g. Hipparcos and Tycho-2, and supplemented by relevant astrophysical data from numerous data sources. The CC is complete down to V=11.6mag, in general, and to V=18.5mag in the one square degree field with the IC 348 cluster. The coordinates and proper motions are reduced to the Hipparcos system and the photometry in the Johnson system. Typical accuracies of 1-20mas for coordinates, 1-3mas/yr for proper motions, 0.01-0.05mag for BV magnitudes were achieved for majority of 29452 CC stars (V<12mag). For a large number of stars we also collected parallaxes and spectral classes (about 7000 stars), the R (about 2000 stars), I, J, H, K (about 500 stars) magnitudes, radial velocities (330 stars). Stars in the Compiled Catalogue are sorted in right ascension order.
- ID:
- ivo://CDS.VizieR/J/ApJ/878/63
- Title:
- Cool WD atmosphere models. IV. Spectral evolution
- Short Name:
- J/ApJ/878/63
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- As a result of competing physical mechanisms, the atmospheric composition of white dwarfs changes throughout their evolution, a process known as spectral evolution. Because of the ambiguity of their atmospheric compositions and the difficulties inherent to the modeling of their dense atmospheres, no consensus exists regarding the spectral evolution of cool white dwarfs (Teff<6000K). In the previous papers of this series, we presented and observationally validated a new generation of cool white dwarf atmosphere models that include all the necessary constitutive physics to accurately model those objects. Using these new models and a homogeneous sample of 501 cool white dwarfs, we revisit the spectral evolution of cool white dwarfs. Our sample includes all spectroscopically identified white dwarfs cooler than 8300K for which a parallax is available in Gaia DR2 and photometric observations are available in Pan-STARRS1 and 2MASS. Except for a few cool carbon-polluted objects, our models allow an excellent fit to the spectroscopic and photometric observations of all objects included in our sample. We identify a decrease of the ratio of hydrogen- to helium-rich objects between 7500 and 6250K, which we interpret as the signature of convective mixing. After this decrease, hydrogen-rich objects become more abundant up to 5000K. This puzzling increase, reminiscent of the non-DA gap, has yet to be explained. At lower temperatures, below 5000K, hydrogen-rich white dwarfs become rarer, which rules out the scenario in which the accretion of hydrogen from the interstellar medium dominates the spectral evolution of cool white dwarfs.
- ID:
- ivo://CDS.VizieR/J/A+A/634/A98
- Title:
- Corona-Australis DANCe. I.
- Short Name:
- J/A+A/634/A98
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Corona-Australis is one of the nearest regions to the Sun with recent and ongoing star formation, but the current picture of its stellar (and substellar) content is not complete yet. We take advantage of the second data release of the Gaia space mission to revisit the stellar census and search for additional members of the young stellar association in Corona-Australis. We applied a probabilistic method to infer membership probabilities based on a multidimensional astrometric and photometric data set over a field of 128deg^2^ around the dark clouds of the region. We identify 313 high-probability candidate members to the Corona-Australis association, 262 of which had never been reported as members before. Our sample of members covers the magnitude range between G>~5mag and G<~20mag, and it reveals the existence of two kinematically and spatially distinct subgroups. There is a distributed 'off-cloud' population of stars located in the north of the dark clouds that is twice as numerous as the historically known 'on-cloud' population that is concentrated around the densest cores. By comparing the location of the stars in the HR-diagram with evolutionary models, we show that these two populations are younger than 10Myr. Based on their infrared excess emission, we identify 28 Class II and 215 Class III stars among the sources with available infrared photometry, and we conclude that the frequency of Class~II stars (i.e. `disc-bearing' stars) in the on-cloud region is twice as large as compared to the off-cloud population. The distance derived for the Corona-Australis region based on this updated census is d=149.4^+0.4^_-0.4_pc, which exceeds previous estimates by about 20 pc. In this paper we provide the most complete census of stars in Corona-Australis available to date that can be confirmed with Gaia data. Furthermore, we report on the discovery of an extended and more evolved population of young stars beyond the region of the dark clouds, which was extensively surveyed in the past.
- ID:
- ivo://CDS.VizieR/J/A+A/584/A26
- Title:
- Cosmography of OB stars in the solar neighbourhood
- Short Name:
- J/A+A/584/A26
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We construct a 3D map of the spatial density of OB stars within 500pc from the Sun using the Hipparcos catalogue and find three large-scale stream-like structures that allow a new view on the solar neighbourhood. The spatial coherence of these blue streams and the monotonic age sequence over hundreds of parsecs suggest that they are made of young stars, similar to the young streams that are conspicuous in nearby spiral galaxies. The three streams are 1) the Scorpius to Canis Majoris stream, covering 350pc and 65Myr of star formation history; 2) the Vela stream, encompassing at least 150pc and 25Myr of star formation history; and 3) the Orion stream, including not only the well-known Orion OB1abcd associations, but also a large previously unreported foreground stellar group lying only 200pc from the Sun. The map also reveals a remarkable and previously unknown nearby OB association, between the Orion stream and the Taurus molecular clouds, which might be responsible for the observed structure and star formation activity in this cloud complex. This new association also appears to be the birthplace of Betelgeuse, as indicated by the proximity and velocity of the red giant. If this is confirmed, it would solve the long-standing puzzle of the origin of Betelgeuse. The well-known nearby star-forming low-mass clouds, including the nearby T and R associations Lupus, Cha, Oph, CrA, Taurus, Vela R1, and various low-mass cometary clouds in Vela and Orion, appear in this new view of the local neighbourhood to be secondary star formation episodes that most likely were triggered by the feedback from the massive stars in the streams. We also recover well-known star clusters of various ages that are currently cruising through the solar neighbourhood. Finally, we find no evidence of an elliptical structure such as the Gould belt, a structure we suggest is a 2D projection effect, and not a physical ring.