- ID:
- ivo://CDS.VizieR/J/ApJ/775/125
- Title:
- Metallicity of galaxies from colors
- Short Name:
- J/ApJ/775/125
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- There is a well known correlation between the mass and metallicity of star-forming galaxies. Because mass is correlated with luminosity, this relation is often exploited, when spectroscopy is not available, to estimate galaxy metallicities based on single band photometry. However, we show that galaxy color is typically more effective than luminosity as a predictor of metallicity. This is a consequence of the correlation between color and the galaxy mass-to-light ratio and the recently discovered correlation between star formation rate (SFR) and residuals from the mass-metallicity relation. Using Sloan Digital Sky Survey spectroscopy of ~180000 nearby galaxies, we derive "LZC relations," empirical relations between metallicity (in seven common strong line diagnostics), luminosity, and color (in 10 filter pairs and four methods of photometry). We show that these relations allow photometric metallicity estimates, based on luminosity and a single optical color, that are ~50% more precise than those made based on luminosity alone; galaxy metallicity can be estimated to within ~0.05-0.1 dex of the spectroscopically derived value depending on the diagnostic used. Including color information in photometric metallicity estimates also reduces systematic biases for populations skewed toward high or low SFR environments, as we illustrate using the host galaxy of the supernova SN 2010ay. This new tool will lend more statistical power to studies of galaxy populations, such as supernova and gamma-ray burst host environments, in ongoing and future wide-field imaging surveys.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/551/A36
- Title:
- Metallicity of M dwarfs. III.
- Short Name:
- J/A+A/551/A36
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The aim of this work is the study of the planet-metallicity and the planet-stellar mass correlations for M dwarfs from the HARPS GTO M dwarf subsample. We use a new method that takes advantage of the HARPS high-resolution spectra to increase the precision of metallicity, using previous photometric calibrations of [Fe/H] and effective temperature as starting values.
- ID:
- ivo://CDS.VizieR/J/ApJ/834/186
- Title:
- Metallicity of MPA-JHU SDSS-DR7 dwarf galaxies
- Short Name:
- J/ApJ/834/186
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We study how the cosmic environment affects galaxy evolution in the universe by comparing the metallicities of dwarf galaxies in voids with dwarf galaxies in more dense regions. Ratios of the fluxes of emission lines, particularly those of the forbidden [OIII] and [SII] transitions, provide estimates of a region's electron temperature and number density. From these two quantities and the emission line fluxes [OII]{lambda}3727, [OIII]{lambda}4363, and [OIII]{lambda}{lambda}4959,5007, we estimate the abundance of oxygen with the direct T_e_ method. We estimate the metallicity of 42 blue, star-forming void dwarf galaxies and 89 blue, star-forming dwarf galaxies in more dense regions using spectroscopic observations from the Sloan Digital Sky Survey Data Release 7, as reprocessed in the MPA-JHU value-added catalog. We find very little difference between the two sets of galaxies, indicating little influence from the large-scale environment on their chemical evolution. Of particular interest are a number of extremely metal-poor dwarf galaxies that are less prevalent in voids than in the denser regions.
1124. Metallicity of NGC 6388
- ID:
- ivo://CDS.VizieR/J/A+A/659/A122
- Title:
- Metallicity of NGC 6388
- Short Name:
- J/A+A/659/A122
- Date:
- 15 Mar 2022 06:09:01
- Publisher:
- CDS
- Description:
- NGC 6388 is one of the most massive Galactic globular clusters (GC) and it is an old, metal-rich, Galactic bulge cluster. By exploiting previous spectroscopic observations we were able to bypass the uncertainties in membership related to the strong field stars contamination. We present the abundance analysis of 12 new giant stars with UVES spectra and 150 giants with GIRAFFE spectra acquired at the ESO-VLT. We derived radial velocities, atmospheric parameters and iron abundances for all stars. When combined to previous data, we obtain a grand total of 185 stars homogeneously analysed in NGC 6388 from high-resolution spectroscopy. The average radial velocity of the 185 stars is 81.2+/-0.7, rms=9.4km/s. We obtain an average metallicity [Fe/H]=-0.480dex, rms=0.045 dex (35 stars) and [Fe/H]=-0.488dex, rms=0.040dex (150 stars) from the UVES and GIRAFFE samples, respectively. Comparing these values to internal errors in abundance, we exclude the presence of a significant intrinsic metallicity spread within the cluster. Since about a third of giants in NGC 6388 is claimed to belong to the anomalous red giants in the HST pseudo-colour map defining the so-called type-II GCs, we conclude that either enhanced metallicity is not a necessary requisite to explain this classification (as also suggested by the null iron spread for NGC 362) or NGC 6388 is not a type-II globular cluster.
- ID:
- ivo://CDS.VizieR/J/ApJ/798/77
- Title:
- Metallicity of RGB stars in 6 M31 dwarf galaxies
- Short Name:
- J/ApJ/798/77
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present global metallicity properties, metallicity distribution functions (MDFs), and radial metallicity profiles for the six most luminous M31 dwarf galaxy satellites: M32, NGC 205, NGC 185, NGC 147, Andromeda VII, and Andromeda II. The results presented are the first spectroscopic MDFs for dwarf systems surrounding a host galaxy other than the Milky Way (MW). Our sample consists of individual metallicity measurements for 1243 red giant branch member stars spread across these six systems. We determine metallicities based on the strength of the Ca II triplet lines using the empirical calibration of Carrera et al. (2013, J/MNRAS/434/1681), which is calibrated over the metallicity range -4<[Fe/H]<+0.5. We find that these M31 satellites lie on the same luminosity-metallicity relationship as the MW dwarf satellites. We do not find a trend between the internal metallicity spread and galaxy luminosity, contrary to previous studies. The MDF widths of And II and And VII are similar to the MW dwarf spheroidal (dSph) satellites of comparable luminosity; however, our four brightest M31 dwarf satellites are more luminous than any of the MW dSphs and have broader MDFs. The MDFs of our six M31 dwarf satellites are consistent with the leaky box model of chemical evolution, although our metallicity errors allow a wide range of evolution models. We find a significant radial gradient in metallicity in only two of our six systems, NGC 185 and Andromeda II, and flat radial metallicity gradients in the rest of our sample with no observed correlation between rotational support and radial metallicity gradients. Although the average properties and radial trends of the M31 dwarf galaxies agree with their MW counterparts at similar luminosity, the detailed MDFs are different, particularly at the metal-rich end.
- ID:
- ivo://CDS.VizieR/J/AJ/136/2441
- Title:
- Metallicity of RR0 Lyrae in the galactic bulge
- Short Name:
- J/AJ/136/2441
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present metallicities of 2690 RR0 Lyrae stars observed toward the MACHO Survey fields in the Galactic bulge. These [Fe/H] values are based upon an empirically-calibrated relationship that uses the Fourier coefficients of the light curve and are accurate to +/-0.2dex. The majority of the RR0 Lyrae stars in our sample are located in the Galactic bulge, but 255 RR0 stars are associated with the Sagittarius (Sgr) dwarf galaxy.
- ID:
- ivo://CDS.VizieR/J/A+A/541/A40
- Title:
- Metallicity of solar-type stars
- Short Name:
- J/A+A/541/A40
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Around 16% of the solar-like stars in our neighbourhood show IR-excesses due to dusty debris discs and a fraction of them are known to host planets. Determining whether these stars follow any special trend in their properties is important to understand debris disc and planet formation. We aim to determine in a homogeneous way the metallicity of a sample of stars with known debris discs and planets. We attempt to identify trends related to debris discs and planets around solar-type stars Our analysis includes the calculation of the fundamental stellar parameters Teff, logg, microturbulent velocity, and metallicity by applying the iron ionisation equilibrium conditions to several isolated FeI and FeII lines. High-resolution echelle spectra (R~57000) from 2, 3m class telescopes are used. Our derived metallicities are compared with other results in the literature, which finally allows us to extend the stellar samples in a consistent way.
- ID:
- ivo://CDS.VizieR/J/A+A/567/A55
- Title:
- Metallicity of the {gamma} Vel cluster
- Short Name:
- J/A+A/567/A55
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Knowledge of the abundance distribution of star forming regions and young clusters is critical to investigate a variety of issues, from triggered star formation and chemical enrichment by nearby supernova explosions to the ability to form planetary systems. In spite of this, detailed abundance studies are currently available for relatively few regions. In this context, we present the analysis of the metallicity of the Gamma Velorum cluster, based on the products distributed in the first internal release of the Gaia-ESO Survey. The Gamma Velorum candidate members have been observed with FLAMES, using both UVES and Giraffe, depending on the target brightness and spectral type. In order to derive a solid metallicity determination for the cluster, membership of the observed stars must be first assessed. To this aim, we use several membership criteria including radial velocities, surface gravity estimates, and the detection of the photospheric lithium line. Out of the 80 targets observed with UVES, we identify 14 high-probability members. We find that the metallicity of the cluster is slightly sub-solar, with a mean [Fe/H]=-0.057+/-0.018dex. Although J08095427-4721419 is one of the high-probability members, its metallicity is significantly larger than the cluster average. We speculate about its origin as the result of recent accretion episodes of rocky bodies of about 60 Msun hydrogen-depleted material from the circumstellar disc.
- ID:
- ivo://CDS.VizieR/J/ApJ/758/133
- Title:
- Metallicity profile of M31 HII regions and PNe
- Short Name:
- J/ApJ/758/133
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The oxygen abundance gradients among nebular emission line regions in spiral galaxies have been used as important constraints for models of chemical evolution. We present the largest-ever full-wavelength optical spectroscopic sample of emission line nebulae in a spiral galaxy (M31). We have collected spectra of 253 HII regions and 407 planetary nebulae (PNe) with the Hectospec multi-fiber spectrograph of the MMT. We measure the line-of-sight extinction for 199 HII regions and 333 PNe; we derive oxygen abundance directly, based on the electron temperature, for 51 PNe; and we use strong-line methods to estimate oxygen abundance for 192 HII regions and nitrogen abundance for 52 HII regions. The relatively shallow oxygen abundance gradient of the more extended HII regions in our sample is generally in agreement with the result of Zaritsky et al. (1994ApJ...420...87Z), based on only 19 M31 HII regions, but varies with the strong-line diagnostic employed. Our large sample size demonstrates that there is significant intrinsic scatter around this abundance gradient, as much as ~3 times the systematic uncertainty in the strong-line diagnostics. The intrinsic scatter is similar in the nitrogen abundances, although the gradient is significantly steeper. On small scales (deprojected distance <0.5kpc), HII regions exhibit local variations in oxygen abundance that are larger than 0.3dex in 33% of neighboring pairs. We do not identify a significant oxygen abundance gradient among PNe, but we do find a significant gradient in the [NII] ratio that varies systematically with surface brightness. Our results underscore the complex and inhomogeneous nature of the interstellar medium of M31, and our data set illustrates systematic effects relevant to future studies of the metallicity gradients in nearby spiral galaxies.
- ID:
- ivo://CDS.VizieR/J/A+A/354/169
- Title:
- Metal-poor field stars abundances
- Short Name:
- J/A+A/354/169
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have determined Li, C, N, O, Na, and Fe abundances, and ^12^C/^13^C isotopic ratios for a sample of 62 field metal-poor stars in the metallicity range -2<=[Fe/H]<=-1. Stars were selected in order to have accurate luminosity estimates from the literature, so that evolutionary phases could be clearly determined for each star. We further enlarged this dataset by adding 43 more stars having accurate abundances for some of these elements and similarly well defined luminosities from the literature.