- ID:
- ivo://CDS.VizieR/J/ApJ/711/350
- Title:
- Metal-poor giant Boo-1137 abundances
- Short Name:
- J/ApJ/711/350
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present high-resolution (R~40000), high-signal-to-noise ratio (20-90) spectra of an extremely metal-poor giant star Boo-1137 in the "ultra-faint" dwarf spheroidal galaxy (dSph) Bootes I, absolute magnitude M_V_~-6.3. We derive an iron abundance of [Fe/H]=-3.7, making this the most metal-poor star as yet identified in an ultra-faint dSph. Our derived effective temperature and gravity are consistent with its identification as a red giant in Bootes I. Abundances for a further 15 elements have also been determined. Comparison of the relative abundances, [X/Fe], with those of the extremely metal-poor red giants of the Galactic halo shows that Boo-1137 is "normal" with respect to C and N, the odd-Z elements Na and Al, the iron-peak elements, and the neutron-capture elements Sr and Ba, in comparison with the bulk of the Milky Way halo population having [Fe/H]<~-3.0. The {alpha}-elements Mg, Si, Ca, and Ti are all higher by {Delta}[X/Fe]~0.2 than the average halo values. Monte Carlo analysis indicates that {Delta}[{alpha}/Fe] values this large are expected with a probability ~0.02. The elemental abundance pattern in Boo-1137 suggests inhomogeneous chemical evolution, consistent with the wide internal spread in iron abundances we previously reported.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/874/148
- Title:
- Metal-poor star RAVE J093730.5-062655 abundances
- Short Name:
- J/ApJ/874/148
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- A new moderately r-process-enhanced metal-poor star, RAVEJ093730.5-062655, has been identified in the Milky Way halo as part of an ongoing survey by the R-Process Alliance. The temperature and surface gravity indicate that J0937-0626 is likely a horizontal branch star. At [Fe/H]=-1.86, J0937-0626 is found to have subsolar [X/Fe] ratios for nearly every light, {alpha}, and Fe-peak element. The low [{alpha}/Fe] ratios can be explained by an ~0.6dex excess of Fe; J0937-0626 is therefore similar to the subclass of "iron-enhanced" metal-poor stars. A comparison with Milky Way field stars at [Fe/H]=-2.5 suggests that J0937-0626 was enriched in material from an event, possibly a Type Ia supernova, that created a significant amount of Cr, Mn, Fe, and Ni and smaller amounts of Ca, Sc, Ti, and Zn. The r-process enhancement of J0937-0626 is likely due to a separate event, which suggests that its birth environment was highly enriched in r-process elements. The kinematics of J0937-0626, based on Gaia DR2 data, indicate a retrograde orbit in the Milky Way halo; J0937-0626 was therefore likely accreted from a dwarf galaxy that had significant r-process enrichment.
- ID:
- ivo://CDS.VizieR/J/ApJ/781/40
- Title:
- Metal-poor stars from HES survey. II. Spectroscopy
- Short Name:
- J/ApJ/781/40
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report on the discovery of seven low-metallicity stars selected from the Hamburg/ESO Survey, six of which are extremely metal-poor (EMP, [Fe/H]{<=}-3.0), with four having [Fe/H]{<=}-3.5. Chemical abundances or upper limits are derived for these stars based on high-resolution (R~35000) Magellan/MIKE spectroscopy, and are in general agreement with those of other very and extremely metal-poor stars reported in the literature. Accurate metallicities and abundance patterns for stars in this metallicity range are of particular importance for studies of the shape of the metallicity distribution function of the Milky Way's halo system, in particular for probing the nature of its low-metallicity tail. In addition, taking into account suggested evolutionary mixing effects, we find that six of the program stars (with [Fe/H]{<=}-3.35) possess atmospheres that were likely originally enriched in carbon, relative to iron, during their main-sequence phases. These stars do not exhibit overabundances of their s-process elements, and hence may be, within the error bars, additional examples of the so-called CEMP-no class of objects.
- ID:
- ivo://CDS.VizieR/J/AJ/145/13
- Title:
- Metal-poor stars from SDSS/SEGUE. I. Abundances
- Short Name:
- J/AJ/145/13
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Chemical compositions are determined based on high-resolution spectroscopy for 137 candidate extremely metal-poor (EMP) stars selected from the Sloan Digital Sky Survey (SDSS) and its first stellar extension, the Sloan Extension for Galactic Understanding and Exploration (SEGUE). High-resolution spectra with moderate signal-to-noise (S/N) ratios were obtained with the High Dispersion Spectrograph of the Subaru Telescope. Most of the sample (approximately 80%) are main-sequence turnoff stars, including dwarfs and subgiants. Four cool main-sequence stars, the most metal-deficient such stars known, are included in the remaining sample. Good agreement is found between effective temperatures estimated by the SEGUE stellar parameter pipeline, based on the SDSS/SEGUE medium-resolution spectra, and those estimated from the broadband (V - K)_0_ and (g - r)_0_colors. Our abundance measurements reveal that 70 stars in our sample have [Fe/H] < -3, adding a significant number of EMP stars to the currently known sample. Our analyses determine the abundances of eight elements (C, Na, Mg, Ca, Ti, Cr, Sr, and Ba) in addition to Fe. The fraction of carbon-enhanced metal-poor stars ([C/Fe] > +0.7) among the 25 giants in our sample is as high as 36%, while only a lower limit on the fraction (9%) is estimated for turnoff stars. This paper is the first of a series of papers based on these observational results. The following papers in this series will discuss the higher-resolution and higher-S/N observations of a subset of this sample, the metallicity distribution function, binarity, and correlations between the chemical composition and kinematics of extremely metal-poor stars.
- ID:
- ivo://CDS.VizieR/J/AJ/154/52
- Title:
- Metal-poor stars from SDSS/SEGUE. I Unevolved stars
- Short Name:
- J/AJ/154/52
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present elemental abundances for eight unevolved extremely metal-poor (EMP) stars with T_eff_>5500K, among which seven have [Fe/H]{<}-3.5. The sample is selected from the Sloan Digital Sky Survey/Sloan Extension for Galactic Understanding and Exploration (SDSS/SEGUE) and our previous high-resolution spectroscopic follow-up with the Subaru Telescope. Several methods to derive stellar parameters are compared, and no significant offset in the derived parameters is found in most cases. From an abundance analysis relative to the standard EMP star G64-12, an average Li abundance for stars with [Fe/H]<-3.5 is A(Li)=1.90, with a standard deviation of {sigma}=0.10dex. This result confirms that lower Li abundances are found at lower metallicity, as suggested by previous studies, and demonstrates that the star-to-star scatter is small. The small observed scatter could be a strong constraint on Li-depletion mechanisms proposed for explaining the low Li abundance at lower metallicity. Our analysis for other elements obtained the following results: (i) a statistically significant scatter in [X/Fe] for Na, Mg, Cr, Ti, Sr, and Ba, and an apparent bimodality in [Na/Fe] with a separation of ~0.8dex, (ii) an absence of a sharp drop in the metallicity distribution, and (iii) the existence of a CEMP-s star at [Fe/H]{simeq}-3.6 and possibly at [Fe/H]{simeq}-4.0, which may provide a constraint on the mixing efficiency of unevolved stars during their main-sequence phase.
- ID:
- ivo://CDS.VizieR/J/AJ/142/188
- Title:
- Metal-poor stars from the HES using CH G-band
- Short Name:
- J/AJ/142/188
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We describe a new method to search for metal-poor candidates from the Hamburg/ESO objective-prism survey (HES) based on identifying stars with apparently strong CH G-band strengths for their colors. The hypothesis we exploit is that large overabundances of carbon are common among metal-poor stars, as has been found by numerous studies over the past two decades. The selection was made by considering two line indices in the 4300{AA} region, applied directly to the low-resolution prism spectra. This work also extends a previously published method by adding bright sources to the sample. The spectra of these stars suffer from saturation effects, compromising the index calculations and leading to an undersampling of the brighter candidates. A simple numerical procedure, based on available photometry, was developed to correct the line indices and overcome this limitation. Visual inspection and classification of the spectra from the HES plates yielded a list of 5288 new metal-poor (and by selection, carbon-rich) candidates, which are presently being used as targets for medium-resolution spectroscopic follow-up. Estimates of the stellar atmospheric parameters, as well as carbon abundances, are now available for 117 of the first candidates, based on follow-up medium-resolution spectra obtained with the SOAR 4.1m and Gemini 8m telescopes. There are eight newly discovered stars with [Fe/H] < -3.0 in our sample, including two with [Fe/H] < -3.5.
- ID:
- ivo://CDS.VizieR/J/ApJ/794/58
- Title:
- Metal-poor stars in the thick disk of the Galaxy
- Short Name:
- J/ApJ/794/58
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- A new set of very high signal-to-noise (S/N>100/1), medium-resolution (R~3000) optical spectra have been obtained for 302 of the candidate "weak-metal" stars selected by Bidelman & MacConnell (1973AJ.....78..687B, Cat. III/46). We use these data to calibrate the recently developed generalization of the Sloan Extension for Galactic Exploration and Understanding and Exploration (SEGUE) Stellar Parameter Pipeline, and obtain estimates of the atmospheric parameters (T_eff_, log g, and [Fe/H]) for these non-Sloan Digital Sky Survey/SEGUE data; we also obtain estimates of [C/Fe]. The new abundance measurements are shown to be consistent with available high-resolution spectroscopic determinations, and represent a substantial improvement over the accuracies obtained from the previous photometric estimates reported in Paper I of this series (Norris et al. 1985ApJS...58..463N). The apparent offset in the photometric abundances of the giants in this sample noted by several authors is confirmed by our new spectroscopy; no such effect is found for the dwarfs. The presence of a metal-weak thick-disk (MWTD) population is clearly supported by these new abundance data. Some 25% of the stars with metallicities -1.8<[Fe/H]<=-0.8 exhibit orbital eccentricities e<0.4, yet are clearly separated from members of the inner-halo population with similar metallicities by their location in a Lindblad energy versus angular momentum diagram. A comparison is made with recent results for a similar-size sample of Radial Velocity Experiment stars from Ruchti et al. (2010ApJ...721L..92R ; 2011ApJ...737....9R). We conclude, based on both of these samples, that the MWTD is real, and must be accounted for in discussions of the formation and evolution of the disk system of the Milky Way.
- ID:
- ivo://CDS.VizieR/J/A+A/445/939
- Title:
- Metal-poor stars uvby-beta photometry. XI.
- Short Name:
- J/A+A/445/939
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- New uvby-beta data are provided for 442 high-velocity and metal-poor stars; 90 of these stars have been observed previously by us, and 352 are new. When combined with our previous two photometric catalogues, the data base is now made up of 1533 high-velocity and metal-poor stars, all with photometry and complete kinematic data. Hipparcos, plus a new photometric calibration for M_v_ also based on the Hipparcos parallaxes, provide distances for nearly all of these stars; our previous photometric calibrations give values for E(b-y) and [Fe/H]. The [Fe/H],V(rot) diagram allows us to separate these stars into different Galactic stellar population groups, such as old-thin-disk, thick-disk, and halo. The X histogram, where X is our stellar-population discriminator combining V(rot) and [Fe/H], and contour plots for the [Fe/H],V(rot) diagram both indicate two probable components to the thick disk.
- ID:
- ivo://CDS.VizieR/J/ApJ/875/89
- Title:
- Metal-poor stars with APF. I. LAMOST CEMP stars
- Short Name:
- J/ApJ/875/89
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report on the discovery of five carbon-enhanced metal-poor (CEMP) stars in the metallicity range of -3.3<[Fe/H]{<}-2.4. These stars were selected from the LAMOST DR3 low-resolution (R~2000) spectroscopic database as metal-poor candidates and followed up with high-resolution spectroscopy (R~110000) with the Lick/APF. Stellar parameters and individual abundances for 25 chemical elements (from Li to Eu) are presented for the first time. These stars exhibit chemical abundance patterns that are similar to those reported in other literature studies of very and extremely metal-poor stars. One of our targets, J2114-0616, shows high enhancement in carbon ([C/Fe]=1.37), nitrogen ([N/Fe]=1.88), barium ([Ba/Fe]=1.00), and europium ([Eu/Fe]=0.84). Such chemical abundance pattern suggests that J2114-0616 can be classified as CEMP-r/s star. In addition, the star J1054+0528 can be classified as a CEMP-rI star, with [Eu/Fe]=0.44 and [Ba/Fe]=-0.52. The other stars in our sample show no enhancements in neutron-capture elements and can be classified as CEMP-no stars. We also performed a kinematic and dynamical analysis of the sample stars based on Gaia DR2 data. The kinematic parameters, orbits, and binding energy of these stars show that J2114-0616 is member of the outer-halo population, while the remaining stars belong to the inner-halo population but with an accreted origin. Collectively, these results add important constraints on the origin and evolution of CEMP stars as well as on their possible formation scenarios.
- ID:
- ivo://CDS.VizieR/J/ApJ/882/27
- Title:
- Metal-poor stars with APF obs. II. MW halo stars
- Short Name:
- J/ApJ/882/27
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In this work, we study the chemical compositions and kinematic properties of six metal-poor stars with [Fe/H]{<}-2.5 in the Galactic halo. From high-resolution (R~110000) spectroscopic observations obtained with the Lick/Automated Planet Finder, we determined individual abundances for up to 23 elements, to quantitatively evaluate our sample. We identify two carbon-enhanced metal-poor stars (J1630+0953 and J2216+0246) without enhancement in neutron-capture elements (CEMP-no stars), while the rest of our sample stars are carbon-intermediate. By comparing the light-element abundances of the CEMP stars with predicted yields from nonrotating zero-metallicity massive-star models, we find that the possible progenitors of J1630+0953 and J2216+0246 could be in the 13-25M_{sun}_ mass range, with explosion energies (0.3-1.8)x10^51^erg. In addition, the detectable abundance ratios of light and heavy elements suggest that our sample stars are likely formed from a well-mixed gas cloud, which is consistent with previous studies. We also present a kinematic analysis, which suggests that most of our program stars likely belong to the inner-halo population, with orbits passing as close as ~2.9kpc from the Galactic center. We discuss the implications of these results on the critical constraints on the origin and evolution of CEMP stars, as well as the nature of the Population III progenitors of the lowest-metallicity stars in our Galaxy.