- ID:
- ivo://CDS.VizieR/J/ApJ/762/27
- Title:
- Most metal-poor stars. III. 86 [Fe/H]<=-3.0 stars
- Short Name:
- J/ApJ/762/27
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We examine the metallicity distribution function (MDF) and fraction of carbon-enhanced metal-poor (CEMP) stars in a sample that includes 86 stars with [Fe/H]<=-3.0, based on high-resolution, high signal-to-noise spectroscopy, of which some 32 objects lie below [Fe/H]=-3.5. After accounting for the completeness function, the "corrected" MDF does not exhibit the sudden drop at [Fe/H]=-3.6 that was found in recent samples of dwarfs and giants from the Hamburg/ESO survey. Rather, the MDF decreases smoothly down to [Fe/H]=-4.1. Similar results are obtained from the "raw" MDF. We find that the fraction of CEMP objects below [Fe/H]=-3.0 is 23%+/-6% and 32%+/-8% when adopting the Beers & Christlieb (2005ARA&A..43..531B) and Aoki et al. (2007, J/ApJ/655/492) CEMP definitions, respectively. The former value is in fair agreement with some previous measurements, which adopt the Beers & Christlieb criterion.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/416/787
- Title:
- Mount Wilson Crv Metallicity index
- Short Name:
- J/ApJ/416/787
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- (no description available)
- ID:
- ivo://CDS.VizieR/J/AJ/124/234
- Title:
- M31 outer halo UBVRI photometry and metallicity
- Short Name:
- J/AJ/124/234
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present first results from a spectroscopic survey designed to examine the metallicity and kinematics of individual red giant branch stars in the outer halo of the Andromeda spiral galaxy (M31). This study is based on multislit spectroscopy with the Keck II 10m telescope and Low Resolution Imaging Spectrograph of the Ca II near-infrared triplet in 99 M31 halo candidates in a field at R=19kpc on the southeast minor axis with brightnesses from 20<I<22.
1184. M31 PHAT star clusters
- ID:
- ivo://CDS.VizieR/J/A+A/602/A112
- Title:
- M31 PHAT star clusters
- Short Name:
- J/A+A/602/A112
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- This study is the fifth of a series that investigates the degeneracy and stochasticity problems present in the determination of physical parameters such as age, mass, extinction, and metallicity of partially resolved or unresolved star cluster populations in external galaxies when using HST broad-band photometry. In this work we aim to derive parameters of star clusters using models with fixed and free metallicity based on the HST WFC3+ACS photometric system. The method is applied to derive parameters of a subsample of 1363 star clusters in the Andromeda galaxy observed with the HST. Following Paper III (de Meulenaer et al., 2015A&A...574A..66D), we derive the star cluster parameters using a large grid of stochastic models that are compared to the six observed integrated broad-band WFC3+ACS magnitudes of star clusters. We show that the age, mass, and extinction of the M31 star clusters, derived assuming fixed solar metallicity, are in agreement with previous studies. We also demonstrate the ability of the WFC3+ACS photometric system to derive metallicity of star clusters older than ~1 Gyr. We show that the metallicity derived using broad-band photometry of 36 massive M31 star clusters is in good agreement with the metallicity derived using spectroscopy.
- ID:
- ivo://CDS.VizieR/J/MNRAS/464/2730
- Title:
- M28 red giant branch stars abundances
- Short Name:
- J/MNRAS/464/2730
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the abundance analysis for a sample of 17 red giant branch stars in the metal-poor globular cluster M28 based on high-resolution spectra. This is the first extensive spectroscopic study of this cluster. We derive abundances of O, Na, Mg, Al, Si, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Ba, La, Ce, and Eu. We find a metallicity of [Fe/H]=-1.29+/-0.01 and an {alpha}-enhancement of +0.34+/-0.01 (errors on the mean), typical of halo globular clusters in this metallicity regime. A large spread is observed in the abundances of light elements O, Na, and Al. Mg also shows an anti-correlation with Al with a significance of 3{sigma}. The cluster shows a Na-O anti-correlation and a Na-Al correlation. This correlation is not linear but 'segmented' and that the stars are not distributed continuously, but form at least three well-separated sub-populations. In this aspect, M28 resembles NGC 2808 that was found to host at least five sub-populations. The presence of a Mg-Al anti-correlation favour massive AGB stars as the main polluters responsible for the multiple-population phenomenon.
- ID:
- ivo://CDS.VizieR/J/MNRAS/444/1812
- Title:
- M54 red giants abundances
- Short Name:
- J/MNRAS/444/1812
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The cosmological Li problem is the observed discrepancy between Li abundance (A(Li)) measured in Galactic dwarf, old and metal-poor stars (traditionally assumed to be equal to the initial value A(Li)_0_), and that predicted by standard big bang nucleosynthesis (BBN) calculations (A(Li)_BBN_). Here, we attack the Li problem by considering an alternative diagnostic, namely the surface Li abundance of red giant branch stars that in a colour-magnitude diagram populate the region between the completion of the first dredge-up and the red giant branch bump. We obtained high-resolution spectra with the FLAMES facility at the Very Large Telescope for a sample of red giants in the globular cluster M54, belonging to the Sagittarius dwarf galaxy. We obtain A(Li)=0.93+/-0.11dex, translating - after taking into account the dilution due to the dredge-up - to initial abundances (A(Li)_0_) in the range 2.35-2.29 dex, depending on whether or not atomic diffusion is considered. This is the first measurement of Li in the Sagittarius galaxy and the more distant estimate of A(Li)_0_ in old stars obtained so far. The A(Li)_0_ estimated in M54 is lower by ~0.35dex than A(Li)_BBN_, hence incompatible at a level of ~3{sigma}. Our result shows that this discrepancy is a universal problem concerning both the Milky Way and extragalactic systems. Either modifications of BBN calculations, or a combination of atomic diffusion plus a suitably tuned additional mixing during the main sequence, need to be invoked to solve the discrepancy.
- ID:
- ivo://CDS.VizieR/J/A+A/645/A115
- Title:
- 346 M31 star clusters and their parameters
- Short Name:
- J/A+A/645/A115
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Determining the metallicities and ages of M31 clusters is fundamental to the study of the formation and evolution of M31 itself. The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) has carried out a systematic spectroscopic campaign of clusters and candidates in M31. We constructed a catalogue of 346 M31 clusters observed by LAMOST. By combining the information of the LAMOST spectra and the multi-band photometry, we developed a new algorithm to estimate the metallicities and ages of these clusters. We distinguish young clusters from old using random forest classifiers based on a empirical training data set selected from the literature. Ages of young clusters are derived from the spectral energy distribution fits of their multi-band photometric measurements. Their metallicities are estimated by fitting their observed spectral principal components extracted from the LAMOST spectra with those from the young metal-rich single stellar population (SSP) models. For old clusters we built non-parameter random forest models between the spectral principal components and/or multi-band colours and the parameters of the clusters based on a training data set constructed from the SSP models. The ages and metallicities of the old clusters are then estimated by fitting their observed spectral principal components extracted from the LAMOST spectra and multi-band colours from the photometric measurements with the resultant random forest models. We derived parameters of 53 young and 293 old clusters in our catalogue. Our resultant parameters are in good agreement with those from the literature. The ages of ~30 catalogued clusters and metallicities of ~40 sources are derived for the first time.
- ID:
- ivo://CDS.VizieR/J/MNRAS/465/3515
- Title:
- M13 stars radial velocities
- Short Name:
- J/MNRAS/465/3515
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We use radial velocities from spectra of giants obtained with the WIYN telescope, coupled with existing chemical abundance measurements of Na and O for the same stars, to probe the presence of kinematic differences among the multiple populations of the globular cluster (GC) M13. To characterize the kinematics of various chemical subsamples, we introduce a method using Bayesian inference along with a Markov chain Monte Carlo algorithm to fit a six-parameter kinematic model (including rotation) to these subsamples. We find that the so-called extreme population (Na-enhanced and extremely O-depleted) exhibits faster rotation around the centre of the cluster than the other cluster stars, in particular, when compared with the dominant `intermediate' population (moderately Na-enhanced and O-depleted). The most likely difference between the rotational amplitude of this extreme population and that of the intermediate population is found to be 4km/s , with a 98.4 per cent probability that the rotational amplitude of the extreme population is larger than that of the intermediate population. We argue that the observed difference in rotational amplitudes, obtained when splitting subsamples according to their chemistry, is not a product of the long-term dynamical evolution of the cluster, but more likely a surviving feature imprinted early in the formation history of this GC and its multiple populations. We also find an agreement (within uncertainties) in the inferred position angle of the rotation axis of the different subpopulations considered. We discuss the constraints that these results may place on various formation scenarios.
- ID:
- ivo://CDS.VizieR/J/A+A/552/A40
- Title:
- MSX high-contrast IRDCs with NH_3_
- Short Name:
- J/A+A/552/A40
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Despite increasing research in massive star formation, little is known about its earliest stages. Infrared Dark Clouds (IRDCs) are cold, dense and massive enough to harbour the sites of future high-mass star formation. But up to now, mainly small samples have been observed and analysed. To understand the physical conditions during the early stages of high-mass star formation, it is necessary to learn more about the physical conditions and stability in relatively unevolved IRDCs. Thus, for characterising IRDCs studies of large samples are needed. We investigate a complete sample of 220 northern hemisphere high-contrast IRDCs using the ammonia (1,1)- and (2,2)-inversion transitions. We detected ammonia (1,1)-inversion transition lines in 109 of our IRDC candidates. Using the data we were able to study the physical conditions within the star-forming regions statistically. We compared them with the conditions in more evolved regions which have been observed in the same fashion as our sample sources. Our results show that IRDCs have, on average, rotation temperatures of 15K, are turbulent (with line width FWHMs around 2km/s), have ammonia column densities on the order of 10^14^cm^-2^ and molecular hydrogen column densities on the order of 10^22^cm^-2^. Their virial masses are between 100 and a few 1000M_{sun}_. The comparison of bulk kinetic and potential energies indicate that the sources are close to virial equilibrium. IRDCs are on average cooler and less turbulent than a comparison sample of high-mass protostellar objects, and have lower ammonia column densities. Virial parameters indicate that the majority of IRDCs are currently stable, but are expected to collapse in the future.
- ID:
- ivo://CDS.VizieR/J/ApJ/876/23
- Title:
- Multiple populations of extrasolar gas giants
- Short Name:
- J/ApJ/876/23
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- There are two planetary formation scenarios: core accretion and gravitational disk instability. Based on the fact that gaseous objects are preferentially observed around metal-rich host stars, most extrasolar gaseous objects discovered to date are thought to have been formed by core accretion. Here, we present 569 samples of gaseous planets and brown dwarfs found in 485 planetary systems that span three mass regimes with boundary values at 4 and 25 Jupiter-mass masses through performing cluster analyses of these samples regarding the host-star metallicity, after minimizing the impact of the selection effect of radial-velocity measurement on the cluster analysis. The larger mass is thought to be the upper mass limit of the objects that were formed during the planetary formation processes. In contrast, the lower mass limit appears to reflect the difference between planetary formation processes around early-type and G-type stars; disk instability plays a greater role in the planetary formation process around early-type stars than that around G-type stars. Populations with masses between 4 and 25 Jupiter masses that orbit early-type stars comprise planets formed not only via the core-accretion process but also via gravitational disk instability because the population preferentially orbits metal-poor stars or is independent of the host-star metallicity. Therefore, it is essential to have a hybrid scenario for the planetary formation of the diverse systems.