- ID:
- ivo://CDS.VizieR/J/A+A/639/A127
- Title:
- Age-chemical-clocks-metallicity relations
- Short Name:
- J/A+A/639/A127
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In the era of large spectroscopic surveys, massive databases of high-quality spectra coupled with the products of the Gaia satellite provide tools to outline a new picture of our Galaxy. In this framework, an important piece of information is provided by our ability to infer stellar ages, and consequently to sketch a Galactic timeline. We aim to provide empirical relations between stellar ages and abundance ratios for a sample of stars with very similar stellar parameters to those of the Sun, namely the so-called solar-like stars. We investigate the dependence on metallicity, and we apply our relations to independent samples, that is, the Gaia-ESO samples of open clusters and of field stars. We analyse high-resolution and high-signal-to-noise-ratio HARPS spectra of a sample of solar-like stars to obtain precise determinations of their atmospheric parameters and abundances for 25 elements and/or ions belonging to the main nucleosynthesis channels through differential spectral analysis, and of their ages through isochrone fitting. We investigate the relations between stellar ages and several abundance ratios. For the abundance ratios with a steeper dependence on age, we perform multivariate linear regressions, in which we include the dependence on metallicity, [Fe/H]. We apply our best relations to a sample of open clusters located from the inner to the outer regions of the Galactic disc. Using our relations, we are able to recover the literature ages only for clusters located at R_GC_>7kpc. The values that we obtain for the ages of the inner-disc clusters are much greater than the literature ones. In these clusters, the content of neutron capture elements, such as Y and Zr, is indeed lower than expected from chemical evolution models, and consequently their [Y/Mg] and [Y/Al] are lower than in clusters of the same age located in the solar neighbourhood. With our chemical evolution model and a set of empirical yields, we suggest that a strong dependence on the star formation history and metallicity-dependent stellar yields of s-process elements can substantially modify the slope of the [s/{alpha}]-[Fe/H]-age relation in different regions of the Galaxy. Our results point towards a non-universal relation [s/{alpha}]-[Fe/H]-age, indicating the existence of relations with different slopes and intercepts at different Galactocentric distances or for different star formation histories. Therefore, relations between ages and abundance ratios obtained from samples of stars located in a limited region of the Galaxy cannot be translated into general relations valid for the whole disc. A better understanding of the s-process at high metallicity is necessary to fully understand the origin of these variations.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/394/927
- Title:
- Age-metallicity relation for nearby stars
- Short Name:
- J/A+A/394/927
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Ages, Fe and Ca abundances, orbits, and populations for 1658 solar neighbourhood stars are presented. Stars are selected from Hipparcos (Cat. <II/239> Catalogue.
- ID:
- ivo://CDS.VizieR/J/A+A/377/911
- Title:
- Age-metallicity relation in solar neighbourhood
- Short Name:
- J/A+A/377/911
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We derive stellar ages, from evolutionary tracks, and metallicities, from Stroemgren photometry, for a sample of 5828 dwarf and sub-dwarf stars from the Hipparcos (Cat. <I/239>) Catalogue. This stellar disk sample is used to investigate the age-metallicity diagram in the solar neighbourhood. Such diagrams are often used to derive a so called age-metallicity relation. Because of the size of our sample, we are able to quantify the impact on such diagrams, and derived relations, due to different selection effects. Some of these effects are of a more subtle sort, giving rise to erroneous conclusions. In particular we show that [1] the age-metallicity diagram is well populated at all ages and especially that old, metal-rich stars do exist, [2] the scatter in metallicity at any given age is larger than the observational errors, [3] the exclusion of cooler dwarf stars from an age-metallicity sample preferentially excludes old, metal-rich stars, depleting the upper right-hand corner of the age-metallicity diagram, [4] the distance dependence found in the Edvardsson et al. (1993, Cat. <J/A+A/275/101>) sample by Garnett & Kobulnicky (2000ApJ...532.1192G) is an expected artifact due to the construction of the original sample. We conclude that, although some of it can be attributed to stellar migration in the galactic disk, a large part of the observed scatter is intrinsic to the formation processes of stars.
- ID:
- ivo://CDS.VizieR/J/ApJ/647/1075
- Title:
- Age-metallicity relation of {omega} Cen
- Short Name:
- J/ApJ/647/1075
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a metallicity distribution based on photometry and spectra for 442 Omega Centauri cluster members that lie at the main-sequence turnoff region of the color-magnitude diagram. This distribution is similar to that found for the red giant branch. The distribution shows a sharp rise to a mean of [Fe/H]=-1.7 with a long tail to higher metallicities. Ages have then been determined for the stars using theoretical isochrones enabling the construction of an age-metallicity diagram. Interpretation of this diagram is complicated by the correlation of the errors in the metallicities and ages. Nevertheless, after extensive Monte Carlo simulations, we conclude that our data show that the formation of the cluster took place over an extended period of time: the most metal-rich stars in our sample ([Fe/H]~-0.6) are younger by 2-4Gyr than the most metal-poor population.
- ID:
- ivo://CDS.VizieR/J/MNRAS/385/1270
- Title:
- Age-metallicity relation via photometry
- Short Name:
- J/MNRAS/385/1270
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Using a widely used stellar-population synthesis model, we study the possibility of using pairs of AB system colours to break the well-known stellar age-metallicity degeneracy and to give constraints on two luminosity-weighted stellar-population parameters (age and metallicity). We present the relative age and metallicity sensitivities of the AB system colours that relate to the u, B, g, V, r, R, i, I, z, J,H and K bands, and we quantify the ability of various colour pairs to break the age-metallicity degeneracy. The results also show that the stellar ages and metallicities of galaxies observed by the Sloan Digital Sky Survey and the Two-Micron All-Sky Survey can be estimated via photometry data.
- ID:
- ivo://CDS.VizieR/J/AJ/161/100
- Title:
- Ages and alpha-abundances of population in K2
- Short Name:
- J/AJ/161/100
- Date:
- 19 Jan 2022 13:30:38
- Publisher:
- CDS
- Description:
- We explore the relationships between the chemistry, ages, and locations of stars in the Galaxy using asteroseismic data from the K2 mission and spectroscopic data from the Apache Point Galactic Evolution Experiment survey. Previous studies have used giant stars in the Kepler field to map the relationship between the chemical composition and the ages of stars at the solar circle. Consistent with prior work, we find that stars with high [{alpha}/Fe] have distinct, older ages in comparison to stars with low [{alpha}/Fe]. We provide age estimates for red giant branch (RGB) stars in the Kepler field, which support and build upon previous age estimates by taking into account the effect of {alpha}-enrichment on opacity. Including this effect for [{alpha}/Fe]-rich stars results in up to 10% older ages for low- mass stars relative to corrected solar mixture calculations. This is a significant effect that Galactic archeology studies should take into account. Looking beyond the Kepler field, we estimate ages for 735 RGB stars from the K2 mission, mapping age trends as a function of the line of sight. We find that the age distributions for low- and high-[{alpha}/Fe] stars converge with increasing distance from the Galactic plane, in agreement with suggestions from earlier work. We find that K2 stars with high [{alpha}/Fe] appear to be younger than their counterparts in the Kepler field, overlapping more significantly with a similarly aged low-[{alpha}/Fe] population. This observation may suggest that star formation or radial migration proceeds unevenly in the Galaxy.
- ID:
- ivo://CDS.VizieR/J/A+A/549/A60
- Title:
- Ages and [Fe/H] of M31 globular clusters
- Short Name:
- J/A+A/549/A60
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The formation and evolution of disk galaxies are long standing questions in Astronomy. Understanding the properties of globular cluster systems can lead to important insights on the evolution of its host galaxy. We aim to obtain the stellar population parameters - age and metallicity - of a sample of M31 and Galactic globular clusters. Studying their globular cluster systems is an important step towards understanding their formation and evolution in a complete way.
- ID:
- ivo://CDS.VizieR/J/AJ/152/208
- Title:
- Ages and metallicities for M31 star clusters
- Short Name:
- J/AJ/152/208
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Application of fitting techniques to obtain physical parameters-such as ages, metallicities, and {alpha}-element to iron ratios-of stellar populations is an important approach to understanding the nature of both galaxies and globular clusters (GCs). In fact, fitting methods based on different underlying models may yield different results and with varying precision. In this paper, we have selected 22 confirmed M31 GCs for which we do not have access to previously known spectroscopic metallicities. Most are located at approximately one degree (in projection) from the galactic center. We performed spectroscopic observations with the 6.5m MMT telescope, equipped with its Red Channel Spectrograph. Lick/IDS absorption-line indices, radial velocities, ages, and metallicities were derived based on the EZ_Ages stellar population parameter calculator. We also applied full spectral fitting with the ULySS code to constrain the parameters of our sample star clusters. In addition, we performed {chi}_min_^2^ fitting of the clusters' Lick/IDS indices with different models, including the Bruzual & Charlot models (adopting Chabrier or Salpeter stellar initial mass functions and 1994 or 2000 Padova stellar evolutionary tracks), the galev, and the Thomas et al. models. For comparison, we collected their UVBRIJK photometry from the Revised Bologna Catalogue (v.5) to obtain and fit the GCs' spectral energy distributions (SEDs). Finally, we performed fits using a combination of Lick/IDS indices and SEDs. The latter results are more reliable and the associated error bars become significantly smaller than those resulting from either our Lick/IDS indices-only or our SED-only fits.
- ID:
- ivo://CDS.VizieR/J/ApJ/750/91
- Title:
- Ages and metallicities of old stellar systems
- Short Name:
- J/ApJ/750/91
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a statistical analysis of the properties of a large sample of dynamically hot old stellar systems, from globular clusters (GCs) to giant ellipticals, which was performed in order to investigate the origin of ultracompact dwarf galaxies (UCDs). The data were mostly drawn from Forbes et al. (2008, Cat. J/MNRAS/389/1924). We recalculated some of the effective radii, computed mean surface brightnesses and mass-to-light ratios, and estimated ages and metallicities. We completed the sample with GCs of M31. We used a multivariate statistical technique (K-Means clustering), together with a new algorithm (Gap Statistics) for finding the optimum number of homogeneous sub-groups in the sample, using a total of six parameters (absolute magnitude, effective radius, virial mass-to-light ratio, stellar mass-to-light ratio, and metallicity). We found six groups. FK1 and FK5 are composed of high- and low-mass elliptical galaxies, respectively. FK3 and FK6 are composed of high-metallicity and low-metallicity objects, respectively, and both include GCs and UCDs. Two very small groups, FK2 and FK4, are composed of Local Group dwarf spheroidals. Our groups differ in their mean masses and virial mass-to-light ratios. The relations between these two parameters are also different for the various groups. The probability density distributions of metallicity for the four groups of galaxies are similar to those of the GCs and UCDs. The brightest low-metallicity GCs and UCDs tend to follow the mass-metallicity relation like elliptical galaxies. The objects of FK3 are more metal-rich per unit effective luminosity density than high-mass ellipticals.
- ID:
- ivo://CDS.VizieR/J/ApJ/901/109
- Title:
- Ages & [Fe/H] of the MW bulge using APOGEE
- Short Name:
- J/ApJ/901/109
- Date:
- 18 Feb 2022 00:39:30
- Publisher:
- CDS
- Description:
- We present stellar age distributions of the Milky Way bulge region using ages for ~6000 high-luminosity (log(g)<2.0), metal-rich ([Fe/H]>=-0.5) bulge stars observed by the Apache Point Observatory Galactic Evolution Experiment. Ages are derived using The Cannon label-transfer method, trained on a sample of nearby luminous giants with precise parallaxes for which we obtain ages using a Bayesian isochrone-matching technique. We find that the metal-rich bulge is predominantly composed of old stars (>8Gyr). We find evidence that the planar region of the bulge (|Z_GC_|<=0.25kpc) is enriched in metallicity, Z, at a faster rate (dZ/dt~0.0034Gyr^-1^) than regions farther from the plane (dZ/dt~0.0013Gyr^-1^ at |Z_GC_|>1.00kpc). We identify a nonnegligible fraction of younger stars (age ~2-5Gyr) at metallicities of +0.2<[Fe/H]<+0.4. These stars are preferentially found in the plane (|Z_GC_|<=0.25kpc) and at R_cy_~2-3kpc, with kinematics that are more consistent with rotation than are the kinematics of older stars at the same metallicities. We do not measure a significant age difference between stars found inside and outside the bar. These findings show that the bulge experienced an initial starburst that was more intense close to the plane than far from the plane. Then, star formation continued at supersolar metallicities in a thin disk at 2kpc<~R_cy_<~3kpc until ~2Gyr ago.