Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/855/83
- Title:
- Abundances of very metal-poor stars in Sagittarius
- Short Name:
- J/ApJ/855/83
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Sagittarius (Sgr) is a massive disrupted dwarf spheroidal galaxy in the Milky Way halo that has undergone several stripping events. Previous chemical studies were restricted mainly to a few, metal-rich ([Fe/H]>~-1) stars that suggested a top-light initial mass function (IMF). Here we present the first high-resolution, very metal-poor ([Fe/H]=-1 to -3) sample of 13 giant stars in the main body of Sgr. We derive abundances of 13 elements, namely C, Ca, Co, Fe, Sr, Ba, La, Ce, Nd, Eu, Dy, Pb, and Th, that challenge the interpretation based on previous studies. Our abundances from Sgr mimic those of the metal-poor halo, and our most metal-poor star ([Fe/H]~-3) indicates a pure r-process pollution. Abundances of Sr, Pb, and Th are presented for the first time in Sgr, allowing for age determination using nuclear cosmochronology. We calculate ages of 9+/-2.5Gyr. Most of the sample stars have been enriched by a range of asymptotic giant branch (AGB) stars with masses between 1.3 and 5M_{sun}_. SgrJ190651.47-320147.23 shows a large overabundance of Pb (2.05dex) and a peculiar abundance pattern best fit by a 3M_{sun}_ AGB star. Based on star-to-star scatter and observed abundance patterns, a mixture of low- and high-mass AGB stars and supernovae (15-25M_{sun}_) is necessary to explain these patterns. The high level (0.29+/-0.05dex) of Ca indicates that massive supernovae must have existed and polluted the early ISM of Sgr before it lost its gas. This result is in contrast with a top-light IMF with no massive stars polluting Sgr.
- ID:
- ivo://CDS.VizieR/J/A+A/601/A10
- Title:
- A grid of MARCS model atmospheres for S stars
- Short Name:
- J/A+A/601/A10
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- S-type stars are late-type giants whose atmospheres are enriched in carbon and s-process elements because of either extrinsic pollution by a binary companion or intrinsic nucleosynthesis and dredge-up on the thermally-pulsing asymptotic giant branch. A grid of MARCS model atmospheres has been computed for S stars, covering the range 2700<=Teff(K)<=4000, 0.50<=C/O<0.99, 0<=logg<=5, [Fe/H]=0., -0.5dex, and [s/Fe]= 0, 1, and 2 dex (where the latter quantity refers to the global overabundance of s-process elements). The MARCS models make use of a new ZrO line list. Synthetic spectra computed from these models are used to derive photometric indices in the Johnson and Geneva systems, as well as TiO and ZrO band strengths. A method is proposed to select the model best matching any given S star, a non-trivial operation since the grid contains more than 3500 models covering a five-dimensional parameter space. The method is based on the comparison between observed and synthetic photometric indices and spectral band strengths, and has been applied on a vast subsample of the Henize sample of S stars. Our results confirm the old claim by Piccirillo (1980MNRAS.190..441P) that ZrO bands in warm S stars (Teff > 3200K) are not caused by the C/O ratio being close to unity, as traditionally believed, but rather by some Zr overabundance. The TiO and ZrO band strengths, combined with V-K and J-K photometric indices, are used to select Teff, C/O, [Fe/H] and [s/Fe]. The Geneva U-B_1 and B_2-V_1 indices (or any equivalent) are good at selecting the gravity. The defining spectral features of dwarf S stars are outlined, but none is found among the Henize S stars. More generally, it is found that, at Teff=3200K, a change of C/O from 0.5 to 0.99 has a strong impact on V-K (2mag). Conversely, a range of 2 mag in V-K corresponds to a 200K shift along the (Teff, V-K) relationship (for a fixed C/O value). Hence, the use of a (Teff, V-K) calibration established for M stars will yield large errors for S stars, so that a specific calibration must be used, as provided in the present paper. Using the atmospheric parameters derived by our method for the sample of Henize S stars, we show that the extrinsic-intrinsic dichotomy among S stars reveals itself very clearly as a bimodal distribution in the effective temperatures. Moreover, the increase of s-process element abundances with increasing C/O ratios and decreasing temperatures is apparent among intrinsic stars, confirming theoretical expectations.
- ID:
- ivo://CDS.VizieR/J/A+A/367/859
- Title:
- {alpha} Scl and HD 170973 abundances
- Short Name:
- J/A+A/367/859
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Fine analyses of the magnetic CP stars {alpha} Scl and HD 170973 are presented using ATLAS9 model atmospheres which have same bulk metallicity as the deduced abundances. The light elements are mostly solar except for silicon, and all the heavier elements except nickel in HD 170973, which is solar, are greatly overabundant. The iron peak elements are typically 10 times overabundant, Sr is of order of 1000 times solar, Y and Zr are of order of 100 times solar. The rare earths are 1000 or more times overabundant.
- ID:
- ivo://CDS.VizieR/J/MNRAS/316/514
- Title:
- 28 And & 99 Her elemental abundances
- Short Name:
- J/MNRAS/316/514
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Elemental abundances of 28 And (A7III) and 99 Her (F7V), which have modest rotational velocities, are derived in a manner consistent with previous studies in this series of papers. The values for 28 And, a δ Scuti variable, show that it is slightly metal-poor, but not a classical Am star. 99 Her, which is somewhat more metal-poor, has a rather small microturbulence for its spectral type.
- ID:
- ivo://CDS.VizieR/J/A+A/314/191
- Title:
- Atmospheric parameters in metal-poor stars. I
- Short Name:
- J/A+A/314/191
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present atmospheric parameters for about 300 stars of different chemical composition, whose spectra will be used to study the galactic enrichment of Fe and light elements. These parameters were derived using an homogeneous iterative procedure, which considers new calibrations of colour-T_eff_ relations for F, G and K-type stars based on Infrared Flux Method (IRFM) and interferometric diameters for population I stars, and the Kurucz (1992) model atmospheres. We found that these calibrations yield a self-consistent set of atmospheric parameters for T_eff_>4400K, representing a clear improvement over results obtained with older model atmospheres. Using this T_eff_ -scale and Fe equilibrium of ionization, we obtained very low gravities (implying luminosities incompatible with that expected for RGB stars) for metal-poor stars cooler than 4400K; this might be due either to a moderate Fe overionization (expected from statistical equilibrium calculations) or to inadequacy of Kurucz models to describe the atmospheres of very cool giants. Our T_eff_ scale is compared with other scales recently used for metal-poor stars; it agrees well with those obtained using Kurucz (1992) models, but it gives much larger T_eff_'s than those obtained using OSMARCS models (Edvardsson et al. 1993). This difference is attributed to the different treatment of convection in the two sets of models. For the Sun, the Kurucz (1992) model appears to be preferable to the OSMARCS ones because it better predicts the solar limb darkening; furthermore, we find that our photometric T_eff_ 's for metal-poor stars agree well with both direct estimates based on the IRFM, and with T_eff_'s derived from H{alpha} wings when using Kurucz models.
- ID:
- ivo://CDS.VizieR/J/A+A/350/955
- Title:
- Atmospheric parameters in metal-poor stars. II
- Short Name:
- J/A+A/350/955
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present non-LTE corrections to abundances of Fe, O, Na, and Mg derived from LTE analyses of F-K stars over a broad range of gravities and metal abundances; they were obtained using statistical equilibrium calculations and new model atoms. Line opacity was considered by means of an empirical procedure where it was attributed to a veil of weak Fe I lines; in the case of solar-type dwarfs, results were compared with those obtained using (LTE) mean intensities computed from OSMARCS models. We think that the empirical procedure produces better results for metal-poor stars, while mean intensities should perhaps be preferred for the Sun (where departures from LTE are anyway not very large). Collisions with both electrons and H I atoms were considered. Since cross sections for this second mechanism are very poorly known, we calibrated them empirically by matching observations of RR Lyrae variables at minimum light (discussed in Clementini et al., 1995, Cat. <J/AJ/110/2319>). These stars were selected because non-LTE effects are expected to be larger in these stars than in those usually considered in the study of the chemical evolution of the Galaxy (cool main sequence and red giant branch stars). We found that different non-LTE mechanisms are important for the different species and transitions considered; on the whole, our calculations yielded moderate corrections to LTE abundances for high excitation O lines in warm dwarfs and giants, Na and Mg lines in giants and supergiants, and Fe I lines in F-supergiants (where corrections becomes very large for IR O lines). Non-LTE corrections were found to be negligible in the other cases studied.
- ID:
- ivo://CDS.VizieR/J/A+A/356/238
- Title:
- Atmospheric parameters in metal-poor stars. III.
- Short Name:
- J/A+A/356/238
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the results of the analysis of an extensive set of new and literature high quality data concerning Fe, C, N, O, Na, and Mg. This analysis exploited the T_eff_ scale determined in Gratton et al. (1996, Cat. <J/A+A/314/191>), and the non-LTE abundance corrections computed in Gratton et al. (1999, Cat. <J/A+A/350/955>). Results obtained with various abundance indices are discussed and compared.
- ID:
- ivo://CDS.VizieR/J/A+A/319/593
- Title:
- [Be] abundances in low-metallicity stars
- Short Name:
- J/A+A/319/593
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present observations of the Be II 313.0nm resonance doublet in 14 halo and old disk stars with metallicities ranging from [Fe/H]=-0.4 to =~-3.0 obtained with the CASPEC spectrograph of the ESO 3.6m telescope at a FWHM=~8.6km/s resolution. Abundances are derived by means of the synthetic spectra technique employing Kurucz (1993, CD-ROM 13 and CD-ROM 18) atmospheric models, with enhanced {alpha}-elements and no overshooting.
- ID:
- ivo://CDS.VizieR/J/A+A/586/A158
- Title:
- Binary properties of CH and CEMP stars
- Short Name:
- J/A+A/586/A158
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The HERMES spectrograph installed on the 1.2-m Mercator telescope has been used to monitor the radial velocity of 13 low-metallicity carbon stars, among which seven carbon-enhanced metal-poor (CEMP) stars and six CH stars. All stars but one show clear evidence for binarity. New orbits are obtained for eight systems. The sample covers an extended range in orbital periods, extending from 3.4d (for the dwarf carbon star HE 0024-2523) to about 54yr (for the CH star HD 26, the longest known among barium, CH, and extrinsic S stars). The period - eccentricity diagram for the 40 low-metallicity carbon stars with orbits now available shows no difference between CH and CEMP-s stars (the latter corresponding to those CEMP stars enriched in s-process elements, as are CH stars). We suggest that they must be considered as one and the same family and that their different names only stem from historical reasons. Indeed, these two families have as well very similar mass-function distributions, corresponding to companions with masses in the range 0.5-0.7M_{sun}_, indicative of white-dwarf companions, adopting 0.8-0.9M_{sun}_ for the primary component. This result confirms that CH and CEMP-s stars obey the same mass-transfer scenario as their higher-metallicity analogues, barium stars. The P-e diagrams of barium, CH, and CEMP-s stars are indeed very similar. They reveal two different groups of systems: one with short orbital periods (P<1000d) and mostly circular or almost circular orbits, and another with longer period and eccentric (e>0.1) orbits. These two groups either trace different evolutionary channels during the mass-transfer episode responsible for the chemical peculiarities of the Ba/CH/CEMP-s stars, or result from the operation of tidal circularisation in a more recent past, when the current giant star was ascending the first giant branch.