- ID:
- ivo://CDS.VizieR/J/A+A/540/A96
- Title:
- Molecular gas in Hickson Compact Groups
- Short Name:
- J/A+A/540/A96
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We study the effect of the extreme environment in Hickson Compact Groups (HCGs) on the molecular gas mass, M_H2_, and the star formation rate (SFR) of galaxies as a function of atomic hydrogen (HI) content and evolutionary phase of the group. We selected a redshift-limited (D<100Mpc) sample of 88 galaxies in 20 HCGs with available atomic hydrogen (HI) VLA maps, covering a wide range of HI deficiencies and evolutionary phases of the groups containing at least one spiral galaxy. We observed the CO(1-0) and CO(2-1) lines with the IRAM 30m telescope for 47 galaxies. Together with literature data, our sample contains CO(1-0) spectra for 86 galaxies. We derived the far-infrared (FIR) luminosity L_FIR_ from IRAS data and used it as a tracer of the star formation rate (SFR). We calculated the HI mass, M_HI_ L_FIR_ and M_H2_ deficiencies, based on the values expected from L_B_ and L_K_ in isolated galaxies from the AMIGA sample. We limited our statistical analysis to spiral galaxies, since the large number of upper limits did not allow drawing strong conclusions about M_H2_ and L_FIR_ in early-type galaxies.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/901/L8
- Title:
- Molecular gas properties of 70 PHANGS-ALMA galaxies
- Short Name:
- J/ApJ/901/L8
- Date:
- 23 Feb 2022 00:10:50
- Publisher:
- CDS
- Description:
- Using the PHANGS-ALMA CO(2-1) survey, we characterize molecular gas properties on ~100pc scales across 102,778 independent sightlines in 70 nearby galaxies. This yields the best synthetic view of molecular gas properties on cloud scales across the local star-forming galaxy population obtained to date. Consistent with previous studies, we observe a wide range of molecular gas surface densities (3.4dex), velocity dispersions (1.7dex), and turbulent pressures (6.5dex) across the galaxies in our sample. Under simplifying assumptions about subresolution gas structure, the inferred virial parameters suggest that the kinetic energy of the molecular gas typically exceeds its self-gravitational binding energy at ~100pc scales by a modest factor (1.3 on average). We find that the cloud-scale surface density, velocity dispersion, and turbulent pressure (1) increase toward the inner parts of galaxies, (2) are exceptionally high in the centers of barred galaxies (where the gas also appears less gravitationally bound), and (3) are moderately higher in spiral arms than in inter-arm regions. The galaxy-wide averages of these gas properties also correlate with the integrated stellar mass, star formation rate, and offset from the star-forming main sequence of the host galaxies. These correlations persist even when we exclude regions with extraordinary gas properties in galaxy centers, which contribute significantly to the inter-galaxy variations. Our results provide key empirical constraints on the physical link between molecular cloud populations and their galactic environment.
- ID:
- ivo://CDS.VizieR/J/ApJ/892/148
- Title:
- Molecular ISM in nearby star-forming galaxies
- Short Name:
- J/ApJ/892/148
- Date:
- 19 Jan 2022 09:08:29
- Publisher:
- CDS
- Description:
- We compare the observed turbulent pressure in molecular gas, P_turb_, to the required pressure for the interstellar gas to stay in equilibrium in the gravitational potential of a galaxy, P_DE_. To do this, we combine arcsecond resolution CO data from PHANGS-ALMA with multiwavelength data that trace the atomic gas, stellar structure, and star formation rate (SFR) for 28 nearby star-forming galaxies. We find that P_turb_ correlates with--but almost always exceeds--the estimated P_DE_ on kiloparsec scales. This indicates that the molecular gas is overpressurized relative to the large-scale environment. We show that this overpressurization can be explained by the clumpy nature of molecular gas; a revised estimate of P_DE_ on cloud scales, which accounts for molecular gas self-gravity, external gravity, and ambient pressure, agrees well with the observed P_turb_ in galaxy disks. We also find that molecular gas with cloud-scale P_turb_~P_DE_>~10^5^k_B_Kcm^-3^ in our sample is more likely to be self-gravitating, whereas gas at lower pressure it appears more influenced by ambient pressure and/or external gravity. Furthermore, we show that the ratio between P_turb_ and the observed SFR surface density, {Sigma}_SFR_, is compatible with stellar feedback-driven momentum injection in most cases, while a subset of the regions may show evidence of turbulence driven by additional sources. The correlation between {Sigma}_SFR_ and kpc-scale P_DE_ in galaxy disks is consistent with the expectation from self-regulated star formation models. Finally, we confirm the empirical correlation between molecular-to-atomic gas ratio and kpc-scale P_DE_ reported in previous works.
- ID:
- ivo://CDS.VizieR/J/ApJ/710/150
- Title:
- Molecular lines in EGOs
- Short Name:
- J/ApJ/710/150
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report the first systematic survey of molecular lines (including HCO^+^(1-0) and ^12^CO, ^13^CO, C^18^O(1-0) lines at the 3mm band) toward a new sample of 88 massive young stellar object (MYSO) candidates associated with ongoing outflows (known as extended green objects or EGOs) identified from the Spitzer GLIMPSE survey in the northern hemisphere with the Purple Mountain Observatory 13.7m radio telescope. By analyzing the asymmetries of the optically thick line HCO^+^ for 69 of 72 EGOs with HCO^+^ detection, we found 29 sources with "blue asymmetric profiles" and 19 sources with "red asymmetric profiles."
- ID:
- ivo://CDS.VizieR/J/A+A/575/A9
- Title:
- M17-SW datacubes in C and CO lines
- Short Name:
- J/A+A/575/A9
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We probe the column densities and masses traced by the ionized [CII] and neutral [CI] atomic carbon with spectrally resolved maps, and compare them to the diffuse and dense molecular gas traced by [CI] and low-J CO lines toward the star-forming region M17 SW. We mapped a 4.1pcx4.7pc region in the [CI] 609{mu}m line using the APEX telescope, as well as the CO isotopologues with the IRAM 30m telescope. Data are analyzed based on velocity channel maps that are 1km/s wide. We correlate their spatial distribution with that of the [CII] map obtained with SOFIA/GREAT. Optically thin approximations were used to estimate the column densities of [CI] and [CII] in each velocity channel.
- ID:
- ivo://CDS.VizieR/J/A+AS/144/123
- Title:
- Multiline CO observations of MBM 32
- Short Name:
- J/A+AS/144/123
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Using the KOSMA 3-m telescope we have made observations of the ^12^CO(J=1-0), (J=2-1) and (J=3-2), and the ^13^CO(J=1-0) and (J=2-1) transitions of the high latitude cloud MBM 32. The backend consisted of a Medium Resolution (channel width 167kHz; MRS), or a High Resolution (channel width 38.6kHz; HRS) acousto-optical Spectrometer. The following tables contain properties of clumps derived from the maps, assuming Gaussian clump parameters from the ^12^CO(J=1-0) MRS data (Table 3) ^12^CO(J=1-0) HRS data (Table 4) ^12^CO(J=2-1) MRS data (Table 5) ^13^CO(J=1-0) HRS data (Table 6). We distinguish between different velocity components.
- ID:
- ivo://CDS.VizieR/J/A+A/644/A27
- Title:
- Musca APEX 12CO(2-1), 13CO(2-1) and C18O(2-1) data
- Short Name:
- J/A+A/644/A27
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Dense molecular filaments are ubiquituous in the interstellar medium, yet their internal physical conditions and the role of gravity, turbulence, the magnetic field, radiation, and the ambient cloud during their evolution remain debated. We study the kinematics and physical conditions in the Musca filament, the ambient cloud, and the Chamaeleon-Musca complex to constrain the physics of filament formation. We produced CO(2-1) isotopologue maps with the APEX telescope that cut through the Musca filament. We further study a NANTEN2 ^12^CO(1-6>0) map of the full Musca cloud, HI emission of the Chamaeleon-Musca complex, a Planck polarisation map, line radiative tranfer models, Gaia data, and synthetic observations from filament formation simulations. The Musca cloud, with a size of ~3-6pc, contains multiple velocity components. Radiative transfer modelling of the CO emission indicates that the Musca filament consists of a cold (~10K), dense (n_H2_~10^4^cm^-3^) crest, which is best described with a cylindrical geometry. Connected to the crest, a separate gas component at T~15K and n_H2_~10^3^cm^-3^ is found, the so-called strands. The velocity-coherent filament crest has an organised transverse velocity gradient that is linked to the kinematics of the nearby ambient cloud. This velocity gradient has an angle >=30{deg} with respect to the local magnetic field orientation derived from Planck, and the magnitude of the velocity gradient is similar to the transonic linewidth of the filament crest. Studying the large scale kinematics, we find coherence of the asymmetric kinematics from the 50pc HI cloud down to the Musca filament. We also report a strong [C^18^O]/[^13^CO] abundance drop by an order of magnitude from the filament crest to the strands over a distance <0.2pc in a weak ambient far-ultraviolet (FUV) field. The dense Musca filament crest is a long-lived (several crossing times), dynamic structure that can form stars in the near future because of continuous mass accretion replenishing the filament. This mass accretion on the filament appears to be triggered by a HI cloud-cloud collision, which bends the magnetic field around dense filaments. This bending of the magnetic field is then responsible for the observed asymmetric accretion scenario of the Musca filament, which is, for instance, seen as a V-shape in the position-velocity (PV) diagram.
- ID:
- ivo://CDS.VizieR/J/A+A/641/A17
- Title:
- Musca APEX 12CO(2-1), 12CO(3-2) & 12CO(4-3) data
- Short Name:
- J/A+A/641/A17
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Observations with the Herschel Space Telescope have established that most star forming gas is organised in filaments, a finding that is supported by numerical simulations of the supersonic interstellar medium (ISM) where dense filamentary structures are ubiquitous. We aim to understand the formation of these dense structures by performing observations covering the ^12^CO(4-3), ^12^CO(3-2), and various CO(2-1) isotopologue lines of the Musca filament, using the APEX telescope. The observed CO intensities and line ratios cannot be explained by PDR (photodissociation region) emission because of the low ambient far-UV field that is strongly constrained by the non-detections of the [CII] line at 158um and the [OI] line at 63um, observed with the upGREAT receiver on SOFIA, as well as a weak [CI] 609um line detected with APEX. We propose that the observations are consistent with a scenario in which shock excitation gives rise to warm and dense gas close to the highest column density regions in the Musca filament. Using shock models, we find that the CO observations can be consistent with excitation by J-type low-velocity shocks. A qualitative comparison of the observed CO spectra with synthetic observations of dynamic filament formation simulations shows a good agreement with the signature of a filament accretion shock that forms a cold and dense filament from a converging flow. The Musca filament is thus found to be dense molecular post-shock gas. Filament accretion shocks that dissipate the supersonic kinetic energy of converging flows in the ISM may thus play a prominent role in the evolution of cold and dense filamentary structures.
- ID:
- ivo://CDS.VizieR/J/A+A/631/A110
- Title:
- N131 bubble CO (3-2), (2-1) and (1-0) observations
- Short Name:
- J/A+A/631/A110
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- N131 is a typical infrared dust bubble showing an expanding ringlike shell. We study what kinds of CO line ratios can be used to trace the interaction in the expanding bubble. We carry out new CO (3-2) observations towards bubble N131 using JCMT 15-m telescope, and derive line ratios by combining with our previous CO (2-1) and CO (1-0) data from IRAM 30-m observations. To trace the interaction between the molecular gas and the ionized gas in the HII region, we use RADEX to model the dependence of CO line ratios on kinetic temperature and H_2_ volume density, and examine the abnormal line ratios based on other simulations. We present CO (3-2), CO (2-1), and CO (1-0) integrated intensity maps convolved to the same angular resolution (22.5"). The three different CO transition maps show apparently similar morphology. The line ratios of W_CO_(3-2)/W_CO_(2-1) mostly range from 0.2 to 1.2 with a median of 0.54+/-0.12, while the line ratios of W_CO_(2-1)/W_CO_(1-0) range from 0.5 to 1.6 with a median of 0.84+/-0.15. The high CO line ratios W_CO_(3-2)/W_CO_(2-1)>0.8 and W_CO_(2-1)/W_CO_(1-0)>1.2 are beyond the threshold predicted by numerical simulations based on the assumed density-temperature structure for the inner rims of ringlike shell, where are the compressed areas in bubble N131. These high CO integrated intensity ratios, such as W_CO_(3-2)/W_CO_(2-1)>0.8 and W_CO_(2-1)/W_CO_(1-0)>1.2, can be used as a tracer of gas compressed regions with a relatively high temperature and density. This further suggests that the non-Gaussian part of the line-ratio distribution can be used to trace the interaction between the molecular gas and the hot gas in the bubble.
- ID:
- ivo://CDS.VizieR/J/A+A/585/A117
- Title:
- N131 bubble CO integrated intensity maps
- Short Name:
- J/A+A/585/A117
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- OB-type stars have strong ionizing radiation and drive energetic winds. The ultraviolet radiation from ionizing stars may heat dust and ionize gas to sweep up an expanding bubble shell. This shell may be the result of feedback leading to a new generation of stars. N131 is an infrared dust bubble residing in a molecular filament. We study the formation and fragmentation of this bubble with multiwavelength dust and gas observations. Towards the bubble N131, we analysed archival multiwavelength observations including 3.6, 4.5, 5.8, 8.0, 24, 70, 160, 250, 350, 500um, 1.1mm, and 21cm. In addition, we performed new observations of CO (2-1), CO (1-0), and ^13^CO (1-0) with the IRAM 30m telescope.