- ID:
- ivo://CDS.VizieR/J/A+A/628/A116
- Title:
- HAT-P-26 differential transit photometry
- Short Name:
- J/A+A/628/A116
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- From its discovery, the low density transiting Neptune HAT-P-26b showed a 2.1 sigma detection drift in its spectroscopic data, while photometric data showed a weak curvature in the timing residuals that required further follow-up observations to be confirmed. To investigate this suspected variability, we observed 11 primary transits of HAT-P-26b between March, 2015 and July, 2018. For this, we used the 2.15 meter Jorge Sahade Telescope placed in San Juan, Argentina, and the 1.2 meter STELLA and the 2.5 meter Nordic Optical Telescope, both located in the Canary Islands, Spain. To add upon valuable information on the transmission spectrum of HAT-P-26b, we focused our observations in the R-band only. To contrast the observed timing variability with possible stellar activity, we carried out a photometric follow-up of the host star along three years. We carried out a global fit to the data and determined the individual mid-transit times focusing specifically on the light curves that showed complete transit coverage. Using bibliographic data corresponding to both ground and space-based facilities, plus our new characterized mid-transit times derived from parts-per-thousand precise photometry, we observed indications of transit timing variations in the system, with an amplitude of 4 minutes and a periodicity of 270 epochs. The photometric and spectroscopic follow-up observations of this system will be continued in order to rule out any aliasing effects caused by poor sampling and the long-term periodicity.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/AcA/71/223
- Title:
- HAT-P-36 T80, T100 light curves and O-C
- Short Name:
- J/AcA/71/223
- Date:
- 10 Dec 2021 00:45:52
- Publisher:
- CDS
- Description:
- We study the most precise light curves of the planet-host HAT-P-36 that we obtained from the ground primarily with a brand-new 80cm telescope (T80) very recently installed at Ankara University Kreiken Observatory (AUKR) of Turkey and also from the space with Transiting Exoplanet Survey Satellite (TESS). The main objective of the study is to analyze the Transit Timing Variations (TTV) observed in the hot-Jupiter type planet HAT-P-36 b, a strong candidate for orbital decay, based on our own observations as well as that have been acquired by professional and amateur observers since its discovery (Bakos et al., 2012AJ....144...19B, Cat. J/AJ/144/19). HAT-P-36 displays out-of-transit variability as well as light curve anomalies during the transits of its planet due to stellar spots. We collected and detrended all the complete transit light curves we had access to from these anomalies, which we modeled with EXOFAST (Eastman et al., 2013PASP..125...83E) and measured the mid-transit times forming a homogeneous data set for a TTV analysis. We found an increase in the orbital period of HAT-P-36 b at a rate of 0.014 seconds per year from the best fitting quadratic function, which is only found in the TTV constructed by making use of the mid-transit times measured from detrended light curves, against an expectation of an orbital decay based on its parameters. We refined the values of these system parameters by modelling the Spectral Energy Distribution of the host star, its archival radial velocity observations from multiple instruments, and most precise transit light curves from the space and the ground covering a wide range of wavelengths with EXOFASTv2 (Eastman, 2017, ascl, 1710, 003). We also analyzed the out-of-transit variability from TESS observations to search for potential rotational modulations through a frequency analysis. We report a statistically significant periodicity in the TESS light curve at 4.22+/-0.02 days, which might have been caused by instrumental systematics but should be tracked in the future observations of the target.
- ID:
- ivo://CDS.VizieR/J/AJ/155/119
- Title:
- HATSouth-K2 C7 transiting/eclipsing systems
- Short Name:
- J/AJ/155/119
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report on the result of a campaign to monitor 25 HATSouth candidates using the Kepler space telescope during Campaign 7 of the K2 mission. We discover HATS-36b (EPIC 215969174b, K2-145b), an eccentric (e=0.105+/-0.028) hot Jupiter with a mass of 3.216+/-0.062 M_J_ and a radius of 1.235+/-0.043 R_J_, which transits a solar-type G0V star (V=14.386) in a 4.1752-day period. We also refine the properties of three previously discovered HATSouth transiting planets (HATS-9b, HATS-11b, and HATS-12b) and search the K2 data for TTVs and additional transiting planets in these systems. In addition, we also report on a further three systems that remain as Jupiter-radius transiting exoplanet candidates. These candidates do not have determined masses, however pass all of our other vetting observations. Finally, we report on the 18 candidates that we are now able to classify as eclipsing binary or blended eclipsing binary systems based on a combination of the HATSouth data, the K2 data, and follow-up ground-based photometry and spectroscopy. These range in periods from 0.7 day to 16.7 days, and down to 1.5 mmag in eclipse depths. Our results show the power of combining ground-based imaging and spectroscopy with higher precision space-based photometry, and serve as an illustration as to what will be possible when combining ground-based observations with TESS data.
- ID:
- ivo://CDS.VizieR/J/A+A/638/A5
- Title:
- HD 285507 and AD Leo light and velocity curves
- Short Name:
- J/A+A/638/A5
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The existence of hot Jupiters is still not well understood. Two main channels are thought to be responsible for their current location: a smooth planet migration through the proto-planetary disk or the circularization of an initial high eccentric orbit by tidal dissipation leading to a strong decrease of the semimajor axis. Different formation scenarios result in different observable effects, such as orbital parameters (obliquity/eccentricity), or frequency of planets at different stellar ages. In the context of the GAPS Young-Objects project, we are carrying out a radial velocity survey with the aim to search and characterize young hot-Jupiter planets. Our purpose is to put constraints on evolutionary models and establish statistical properties, such as the frequency of these planets from a homogeneous sample. Since young stars are in general magnetically very active, we performed multi-band (visible and near-infrared) spectroscopy with simultaneous GIANO-B + HARPS-N (GIARPS) observing mode at TNG. This helps to deal with stellar activity and distinguish the nature of radial velocity variations: stellar activity will introduce a wavelength-dependent radial velocity amplitude, whereas a Keplerian signal is achromatic. As a pilot study, we present here the cases of two already claimed hot Jupiters orbiting young stars: HD 285507 b and AD Leo b. Our analysis of simultaneous high-precision GIARPS spectroscopic data confirms the Keplerian nature of HD285507's radial velocities variation and refines the orbital parameters of the hot Jupiter, obtaining an eccentricity consistent with a circular orbit. On the other hand, our analysis does not confirm the signal previously attributed to a planet orbiting AD~Leo. This demonstrates the power of the multi-band spectroscopic technique when observing active stars.
- ID:
- ivo://CDS.VizieR/J/A+A/654/A60
- Title:
- HD 22496 b ESPRESSO RVs
- Short Name:
- J/A+A/654/A60
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- The ESPRESSO spectrograph is a new powerful tool developed to detect and characterize extrasolar planets. Its design allows an unprecedented radial velocity precision (down to a few tens of cm/s) and long-term thermomechanical stability. We present the first stand-alone detection of an extrasolar planet by blind radial velocity search using ESPRESSO; our aim is to show the power of the instrument in characterizing planetary signals at different periodicities in long observing time spans. We used 41 ESPRESSO measurements of HD 22496 obtained within a time span of 895 days with a median photon noise of 18cm/s. A radial velocity analysis was performed to test the presence of planets in the system and to account for the stellar activity of this K5-K7 main-sequence star. For benchmarking and comparison, we attempted the detection with 43 archive HARPS measurements and in this work we compare the results yielded by the two datasets. We also used four TESS sectors to search for transits. We find radial velocity variations compatible with a close-in planet with an orbital period of P=5.09071+/-0.00026 days when simultaneously accounting for the effects of stellar activity on longer timescales (Prot=34.99_-0.53_^+0.58^ days). We characterize the physical and orbital properties of the planet and find a minimum mass of 5.57_-0.68_^+0.73^M_{sun}_, right in the dichotomic regime between rocky and gaseous planets. Although not transiting according to TESS data, if aligned with the stellar spin axis, the absolute mass of the planet must be below 16M_{sun}_. We find no significant evidence for additional signals in the data with semi-amplitudes above 56cm/s at 95% confidence. With a modest set of radial velocity measurements, ESPRESSO is capable of detecting and characterizing low-mass planets and constraining the presence of planets in the habitable zone of K dwarfs down to the rocky-mass regime.
- ID:
- ivo://CDS.VizieR/J/A+A/637/A93
- Title:
- HD 79211 CARMENES radial velocities
- Short Name:
- J/A+A/637/A93
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report on radial velocity time series for two M0.0V stars, GJ 338 B and GJ 338 A, using the CARMENES spectrograph, complemented by ground-telescope photometry from Las Cumbres and Sierra Nevada observatories. We obtained 159 and 70 radial velocity measurements of GJ 338 B and A, respectively, with the CARMENES visible channel between 2016 January and 2018 October. We also compiled additional relative radial velocity measurements from the literature and a collection of astrometric data that cover 200yr of observations to solve for the binary orbit. We found dynamical masses of 0.64+/-0.07M_{sun}_ for GJ338B and 0.69+/-0.07M_{sun}_ for GJ338A. The CARMENES radial velocity periodograms show significant peaks at 16.61+/-0.04d (GJ 338 B) and 16.3+/-3.5d (GJ 338 A), which have counterparts at the same frequencies in CARMENES activity indicators and photometric light curves. We attribute these to stellar rotation. GJ 338 B shows two additional, significant signals at 8.27+/-0.01 and 24.45+/-0.02d, with no obvious counterparts in the stellar activity indices. The former is likely the first harmonic of the star's rotation, while we ascribe the latter to the existence of a super-Earth planet with a minimum mass of 10.27+/-1.47M_{Earth}_ orbiting GJ 338 B.
- ID:
- ivo://CDS.VizieR/J/A+A/646/A157
- Title:
- HD 108236 CHEOPS light curves
- Short Name:
- J/A+A/646/A157
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The detection of a super-Earth and three mini-Neptunes transiting the bright (V=9.2mag) star HD108236 (also known as TOI-1233) was recently reported on the basis of TESS and ground-based light curves. We perform a first characterisation of the HD108236 planetary system through high-precision CHEOPS photometry and improve the transit ephemerides and system parameters. We characterise the host star through spectroscopic analysis and derive the radius with the infrared flux method.We constrain the stellar mass and age by combining the results obtained from two sets of stellar evolutionary tracks. We analyse the available TESS light curves and one CHEOPS transit light curve for each known planet in the system. We find that HD108236 is a Sun-like star with R*=0.877+/-0.008R_{sun}_, M*=0.869^+0.050^_0.048_M_{sun}_, and an age of 6.7^+4.0^_5.1_Gyr. We report the serendipitous detection of an additional planet, HD108236 f, in one of the CHEOPS light curves. For this planet, the combined analysis of the TESS and CHEOPS light curves leads to a tentative orbital period of about 29.5days. From the light curve analysis, we obtain radii of 1.615+/-0.051, 2.071+/-0.052, 2.539^+0.062^_0.065_, 3.083+/-0.052, and 2.017^+0.052^+0.057_R_{Earth}_ for planets HD108236 b to HD108236 f, respectively. These values are in agreement with previous TESS-based estimates, but with an improved precision of about a factor of two. We perform a stability analysis of the system, concluding that the planetary orbits most likely have eccentricities smaller than 0.1. We also employ a planetary atmospheric evolution framework to constrain the masses of the five planets, concluding that HD108236 b and HD108236 c should have an Earth-like density, while the outer planets should host a low mean molecular weight envelope. The detection of the fifth planet makes HD108236 the third system brighter than V=10mag to host more than four transiting planets. The longer time span enables us to significantly improve the orbital ephemerides such that the uncertainty on the transit times will be of the order of minutes for the years to come. A comparison of the results obtained from the TESS and CHEOPS light curves indicates that for a V~9mag solar-like star and a transit signal of 500ppm, one CHEOPS transit light curve ensures the same level of photometric precision as eight TESS transits combined, although this conclusion depends on the length and position of the gaps in the light curve.
- ID:
- ivo://CDS.VizieR/J/A+A/635/A19
- Title:
- HD 117214 debris disk polarization images
- Short Name:
- J/A+A/635/A19
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Young stars with debris disks are the most promising targets for an exoplanet search because debris indicate a successful formation of planetary bodies. Debris disks can be shaped by planets into ring structures that give valuable indications on the presence and location of planets in the disk. We performed observations of the Sco-Cen F star HD 117214 to search for planetary companions and to characterize the debris disk structure. HD 117214 was observed with the SPHERE subsystems IRDIS, IFS, and ZIMPOL at optical and near-IR wavelengths using angular and polarimetric differential imaging techniques. This provided the first images of scattered light from the debris disk with the highest spatial resolution of 25mas and an inner working angle <0.1". With the observations with IRDIS and IFS we derived detection limits for substellar companions. The geometrical parameters of the detected disk were constrained by fitting 3D models for the scattering of an optically thin dust disk. Investigating the possible origin of the disk gap, we introduced putative planets therein and modeled the planet-disk and planet-planet dynamical interactions. The obtained planetary architectures were compared with the detection limit curves. The debris disk has an axisymmetric ring structure with a radius of 0.42(+/-0.01)" or ~45au and an inclination of 71(+/-2.5){deg} and exhibits a 0.4" (~40au) wide inner cavity. From the polarimetric data, we derive a polarized flux contrast for the disk of (Fpol)_disk_/F*=(3.1+/-1.2)x10^-4^ in the RI band. The fractional scattered polarized flux of the disk is eight times lower than the fractional IR flux excess. This ratio is similar to the one obtained for the debris disk HIP 79977, indicating that dust radiation properties are similar for these two disks. Inside the disk cavity we achieve high-sensitivity limits on planetary companions with a mass down to ~4M_J_ at projected radial separations between 0.2" and 0.4". We can exclude stellar companions at a radial separation larger than 75mas from the star.
- ID:
- ivo://CDS.VizieR/J/A+A/639/A50
- Title:
- HD 164922 d HARPS-N time series
- Short Name:
- J/A+A/639/A50
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Observations of exoplanetary systems show that a wide variety of architectures are possible. Determining the rate of occurrence of Solar System analogs - with inner terrestrial planets and outer gas giants - is still an open question. In the framework of the Global Architecture of Planetary Systems (GAPS) project we collected more than 300 spectra with HARPS-N at the Telescopio Nazionale Galileo for the bright G9V star HD164922. This target is known to host one gas giant planet in a wide orbit (Pb~1200-days, semi-major axis ~2au) and a Neptune-mass planet with a period Pc~76-days. Our aim was to investigate the presence of additional low-mass companions in the inner region of the system. We compared the radial velocities (RV) and the activity indices derived from the HARPS-N time series to measure the rotation period of the star and used a Gaussian process regression to describe the behaviour of the stellar activity.We exploited this information in a combined model of planetary and stellar activity signals in an RV time-series composed of almost 700 high-precision RVs, both from HARPS-N and literature data. We performed a dynamical analysis to evaluate the stability of the system and the allowed regions for additional potential companions. We performed experiments of injection and recovery of additional planetary signals to gauge the sensitivity thresholds in minimum mass and orbital separation imposed by our data. Thanks to the high sensitivity of the HARPS-N dataset, we detect an additional inner super-Earth with an RV semi-amplitude of 1.3+/-0.2m/s and a minimum mass of m_d_sini=4+/-/1M_{Earth}_. It orbits HD164922 with a period of 12.4580.003 days. We disentangle the planetary signal from activity and measure a stellar rotation period of ~42 days. The dynamical analysis shows the long term stability of the orbits of the three-planet system and allows us to identify the permitted regions for additional planets in the semi-major axis ranges 0.18-0.21au and 0.6-1.4au. The latter partially includes the habitable zone of the system. We did not detect any planet in these regions, down to minimum detectable masses of 5 and 18M_{Earth}_, respectively. A larger region of allowed planets is expected beyond the orbit of planet b, where our sampling rules-out bodies with minimum mass >50MM_{Earth}. The planetary orbital parameters and the location of the snow line suggest that this system has been shaped by a gas disk migration process that halted after its dissipation.
- ID:
- ivo://CDS.VizieR/J/A+A/614/A138
- Title:
- HD 80606/80607 equivalent widths
- Short Name:
- J/A+A/614/A138
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Differences in the elemental abundances of planet-hosting stars in binary systems can give important clues and constraints about planet formation and evolution. In this study we performed a high-precision, differential elemental abundance analysis of a wide binary system, HD 80606/80607, based on high-resolution spectra with high signal-to-noise ratio obtained with Keck/HIRES. HD 80606 is known to host a giant planet with the mass of four Jupiters, but no planet has been detected around HD 80607 so far. We determined stellar parameters as well as abundances for 23 elements for these two stars with extremely high precision. Our main results are that (i) we confirmed that the two components share very similar chemical compositions, but HD 80606 is marginally more metal-rich than HD 80607, with an average difference of +0.013+/-0.002dex ({sigma}=0.009dex); and (ii) there is no obvious trend between abundance differences and condensation temperature. Assuming that this binary formed from material with the same chemical composition, it is difficult to understand how giant planet formation could produce the present-day photospheric abundances of the elements we measure. We cannot exclude the possibility that HD 80606 might have accreted about 2.5 to 5M_Earth_ material onto its surface, possibly from a planet destabilised by the known highly eccentric giant.