- ID:
- ivo://CDS.VizieR/J/A+A/612/A41
- Title:
- HD 176986 HARPS + HARPS-N data
- Short Name:
- J/A+A/612/A41
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report the discovery of a system of two super-Earths orbiting the moderately active K-dwarf HD 176986. This work is part of the RoPES RV program of G- and K-type stars that combines radial velocity from both HARPS and HARPS-N spectrograph to search for short-period terrestrial planets. HD 176986 b and c are super-Earth mass planets with masses of 5.74 and 9.18 Me, with orbital periods of 6.49 and 16.82 days, at a distances of 0.063 and 0.119AU, in orbits that are consistent with circular. The host star is a K2.5 dwarf, and in spite of its modest level of chromospheric activity log(R'hk)=-4.90+/-0.04, shows a complex activity pattern. Along with the discovery of the planets we study the magnetic cycle and rotation of the star. HD 176986 proves to be suitable to test the available techniques of RV analysis and our understanding of stellar activity.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/MNRAS/503/1248
- Title:
- HD 13808 HARPS radial velocities
- Short Name:
- J/MNRAS/503/1248
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a comprehensive analysis of 10 years of HARPS radial velocities of the K2V dwarf star HD13808, which has previously been reported to host two unconfirmed planet candidates. We use the state-of-the-art nested sampling algorithm PolyChord to compare a wide variety of stellar activity models, including simple models exploiting linear correlations between RVs and stellar activity indicators, harmonic models for the activity signals, and a more sophisticated Gaussian process regression model. We show that the use of overly-simplistic stellar activity models that are not well-motivated physically can lead to spurious `detections' of planetary signals that are almost certainly not real. We also reveal some difficulties inherent in parameter and model inference in cases where multiple planetary signals may be present. Our study thus underlines the importance both of exploring a variety of competing models and of understanding the limitations and precision settings of one's sampling algorithm. We also show that at least in the case of HD 13808, we always arrive at consistent conclusions about two particular signals present in the RV, regardless of the stellar activity model we adopt; these two signals correspond to the previously-reported though unconfirmed planet candidate signals. Given the robustness and precision with which we can characterize these two signals, we deem them secure planet detections. In particular, we find two planets orbiting HD13808 at distances of 0.11, 0.26AU with periods of 14.2, 53.8d, and minimum masses of 11, 10 Earth masses.
- ID:
- ivo://CDS.VizieR/J/A+A/635/A6
- Title:
- HD 219134 light and RV curves and code
- Short Name:
- J/A+A/635/A6
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- By analysing the transit light-curve of a planet-hosting star or the induced radial velocity oscillations, many useful information on the planet may be retrieved. However, inferring the physical parameters of the planet (mass, size, semi-major axis, etc.) requires the preliminary knowledge of some parameters of the host star, especially its mass and/or radius, that are generally inferred through theoretical evolutionary models. The paper aims at presenting and testing a whole algorithm devoted to the complete characterization of an exoplanetary system thanks to the global analysis of photometric and/or radial velocity time-series combined to observational stellar parameters derived either from spectroscopy or photometry. We developed an integrated tool called MCMCI that combines the Markov Chain Monte Carlo (MCMC) approach for analysing photometric and/or radial velocity time-series with a proper interpolation within stellar evolutionary isochrones and tracks (known as Isochrone placement) to be performed at each chain step, to retrieve stellar theoretical parameters, such as age, mass and radius. We tested the MCMCI both on the HD 219134 multiplanetary system hosting two transiting rocky super-Earths and on WASP-4, that hosts a bloated hot Jupiter. Even considering different input approaches, a final convergence was reached within the code, we found good agreement with the results already stated in the literature and we obtained more precise output parameters, especially concerning planetary masses. The MCMCI tool offers the opportunity of performing an integrated analysis of an exoplanetary system, without splitting it into the preliminary stellar characterization through theoretical models, but rather favouring a close interaction between the light-curve analysis and the isochrones, so that the parameters recovered at each step of the MCMC enter as input of the Isochrone placement.
134. HD193571 NaCo images
- ID:
- ivo://CDS.VizieR/J/A+A/627/A77
- Title:
- HD193571 NaCo images
- Short Name:
- J/A+A/627/A77
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The interaction between low-mass companions and the debris disks they reside in is still not fully understood. A debris disk can evolve due to self-stirring, a process in which planetesimals can excite their neighbours to the point of destructive collisions. On top of this, the presence of a companion could further stir the disk (companion-stirring). Additional information is necessary to understand this fundamental step in the formation and evolution of a planetary system, and at the moment of writing only a handful of systems are known in which both a companion and a debris disk have been detected and studied at the same time. Our primary goal is to augment the sample of such systems and understand the relative importance between self-stirring and companion-stirring. In the course of the VLT/NaCo-ISPY Imaging Survey for Planets around Young stars, we observed HD 193571, an A0 debris disk hosting star at a distance of 68 pc with an age between 60-170Myr. We obtained two sets of observations in L' band and a third epoch in H band using the GPI instrument at Gemini-South. A companion was detected in all three epochs at a projected separation of 11au (0.17-arcsec), and co-motion was confirmed through proper motion analysis. Given the inferred disk size of 120au, the companion appears to reside within the gap between the host star and the disk. Comparison between the L' and H band magnitude and evolutionary tracks suggests a mass of 0.31-0.39M_{sun}_. We discovered a previously unknown M-dwarf companion around HD 193571, making it the third low-mass stellar object discovered within a debris disk. Comparison to self- and companion-stirring models suggests that the companion is likely responsible for the stirring of the disk.
- ID:
- ivo://CDS.VizieR/J/A+A/635/A13
- Title:
- HD41248 Radial velocities and activity indicators
- Short Name:
- J/A+A/635/A13
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Twenty-four years after the first exoplanet discoveries, the radial-velocity (RV) method is still one of the most productive techniques to detect and confirm exoplanets. But stellar magnetic activity can induce RV variations large enough to make it difficult to disentangle planet signals from the stellar noise. In this context, HD 41248 is an interesting planet-host candidate, with RV observations plagued by activity-induced signals. We report on ESPRESSO observations of HD 41248 and analyse them together with previous observations from HARPS, with the goal of evaluating the presence of orbiting planets. Using different noise models within a general Bayesian framework designed for planet detection in RV data, we test the significance of the various signals present in the HD 41248 data set. We use Gaussian processes as well as a first-order moving average component to try to correct for activity-induced signals. At the same time, we analyse photometry from the TESS mission, searching for transits and rotational modulation in the lightcurve. The number of significantly detected Keplerian signals depends on the noise model employed, ranging from 0 with the Gaussian process model to 3 with a white noise model. We find that the Gaussian process alone can explain the RV data and allows for the stellar rotation period and active region evolution timescale to be constrained. The rotation period estimated from the RVs agrees with the value determined from the TESS lightcurve. Based on the currently available data, we conclude that the RV variations of HD 41248 can be explained by stellar activity (using the Gaussian process model) in line with the evidence from activity indicators and the TESS photometry.
- ID:
- ivo://CDS.VizieR/J/A+A/636/L6
- Title:
- HD 158259 SOPHIE radial velocities
- Short Name:
- J/A+A/636/L6
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Since 2011, the SOPHIE spectrograph has been used to search for Neptunes and super-Earths in the northern hemisphere. As part of this observational program, 290 radial velocity measurements of the 6.4 V magnitude star HD 158259 were obtained. Additionally, TESS photometric measurements of this target are available. We present an analysis of the SOPHIE data and compare our results with the output of the TESS pipeline. The radial velocity data, ancillary spectroscopic indices, and ground-based photometric measurements were analyzed with classical and l_1_ periodograms. The stellar activity was modeled as a correlated Gaussian noise and its impact on the planet detection was measured with a new technique. The SOPHIE data support the detection of five planets, each with msini~=6M_{Earth}_, orbiting HD 158259 in 3.4, 5.2, 7.9, 12, and 17.4 days. Though a planetary origin is strongly favored, the 17.4 d signal is classified as a planet candidate due to a slightly lower statistical significance and to its proximity to the expected stellar rotation period. The data also present low frequency variations, most likely originating from a magnetic cycle and instrument systematics. Furthermore, the TESS pipeline reports a significant signal at 2.17 days corresponding to a planet of radius ~=1.2R_{Earth}_. A compatible signal is seen in the radial velocities, which confirms the detection of an additional planet and yields a ~=2M_{Earth}_ mass estimate. We find a system of five planets and a strong candidate near a 3:2 mean motion resonance chain orbiting HD 158259. The planets are found to be outside of the two and three body resonances.
- ID:
- ivo://CDS.VizieR/J/A+A/623/A140
- Title:
- HD169142 SPHERE images
- Short Name:
- J/A+A/623/A140
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Young planets are expected to cause cavities, spirals, and kinematic perturbations in protostellar disks that may be used to infer their presence. However, a clear detection of still-forming planets embedded within gas-rich disks is still rare. HD169142 is a very young Herbig Ae-Be star surrounded by a pre-transitional disk, composed of at least three rings. While claims of sub-stellar objects around this star have been made previously, follow-up studies remain inconclusive. The complex structure of this disk is not yet well understood. We used the high contrast imager SPHERE at ESO Very large Telescope to obtain a sequence of high-resolution, high-contrast images of the immediate surroundings of this star over about three years in the wavelength range 0.95-2.25um. This enables a photometric and astrometric analysis of the structures in the disk. While we were unable to definitively confirm the previous claims of a massive sub-stellar object at 0.1-0.15arcsec from the star, we found both spirals and blobs within the disk. The spiral pattern may be explained as due to the presence of a primary, a secondary, and a tertiary arm excited by a planet of a few Jupiter masses lying along the primary arm, likely in the cavities between the rings. The blobs orbit the star consistently with Keplerian motion, allowing a dynamical determination of the mass of the star. While most of these blobs are located within the rings, we found that one of them lies in the cavity between the rings, along the primary arm of the spiral design. This blob might be due to a planet that might also be responsible for the spiral pattern observed within the rings and for the cavity between the two rings. The planet itself is not detected at short wavelengths, where we only see a dust cloud illuminated by stellar light, but the planetary photosphere might be responsible for the emission observed in the K1 and K2 bands. The mass of this putative planet may be constrained using photometric and dynamical arguments. While uncertainties are large, the mass should be between 1 and 4 Jupiter masses. The brightest blobs are found at the 1:2 resonance with this putative planet.
- ID:
- ivo://CDS.VizieR/J/A+A/657/A68
- Title:
- HD 137496 system discovery
- Short Name:
- J/A+A/657/A68
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- Most of the currently known planets are small worlds with radii between that of the Earth and Neptune. The characterization of planets in this regime shows a large diversity in compositions and system architectures, with distributions hinting at a multitude of formation and evolution scenarios. However, many planetary populations, such as high-density planets, are significantly under-sampled limiting our understanding on planet formation and evolution. NCORES is a large observing program conducted on the HARPS high-resolution spectrograph which aims to confirm the planetary status and to measure the masses of small transiting planetary candidates detected by transit photometry surveys in order to constrain their internal composition.Methods.Using photometry from the K2 satellite and radial velocities measured with the HARPS and CORALIE spectrographs, we search for planets around the bright (Vmag=10) and slightly evolved Sun-like star HD 137496. We precisely estimate the stellar parameters, M*=1.035+/-0.022M_{sun}_, R*= 1.587+/-0.028R_{sun}_, Teff=5799+/-61K,together with the chemical composition (e.g. [Fe/H]=-0.027+/-0.040dex) of the slightly evolved star. We detect two planets orbiting HD 137496. The inner planet, HD 137496 b, is a super-Mercury (an Earth-sized planet with the density of Mercury) with a mass of Mb=4.04+/-0.55M_{sun}_), a radius of Rb=1.31^+0.06^_-0.05_R_{sun}_ and a density of {rho}b=10.49^+2.08^_-1.82_g/cm^3^. From interior modeling analysis we find that the planet is composed mainly of iron, with the core representing over 70% of the planet's mass (Mcore/Mtotal=0.73^+0.11^_-0.12_). The outer planet, HD 137496 c, is an eccentric (e=0.477+/-0.004), long period (P=479.9^+1.0^_-1.1_days) giant planet (Mc*sinic=7.66+/-0.11M_{Jup}_) for which we do not detect a transit. HD 137496 b is one of the few super-Mercuries detected to date. The accurate characterization reported here enhances its role as a key target to better understand the formation and evolution of planetary systems. The detection of an eccentric long period giant companion also reinforces the link between the presence of small transiting inner planets and long period gas giants.
- ID:
- ivo://CDS.VizieR/J/AJ/159/278
- Title:
- He-filter observations of WASP-69b & WASP-52b
- Short Name:
- J/AJ/159/278
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Infrared observations of metastable 23S helium absorption with ground- and space-based spectroscopy are rapidly maturing, as this species is a unique probe of exoplanet atmospheres. Specifically, the transit depth in the triplet feature (with vacuum wavelengths near 1083.3nm) can be used to constrain the temperature and mass-loss rate of an exoplanet's upper atmosphere. Here, we present a new photometric technique to measure metastable 23S helium absorption using an ultranarrowband filter (FWHM 0.635nm) coupled to a beam-shaping diffuser installed in the Wide-field Infrared Camera on the 200inch Hale Telescope at Palomar Observatory. We use telluric OH lines and a helium arc lamp to characterize refractive effects through the filter and to confirm our understanding of the filter transmission profile. We benchmark our new technique by observing a transit of WASP-69b and detect an excess absorption of 0.498%{+/-}0.045% (11.1{sigma}), consistent with previous measurements after considering our bandpass. We then use this method to study the inflated gas giant WASP-52b and place a 95th percentile upper limit on excess absorption in our helium bandpass of 0.47%. Using an atmospheric escape model, we constrain the mass-loss rate for WASP-69b to be 5.25_-0.46_^+0.65^x10^-4^M_J_/Gyr (3.32_-0.56_^+0.67^x10^-3^M_J_/Gyr) at 7000K (12000K). Additionally, we set an upper limit on the mass-loss rate of WASP-52b at these temperatures of 2.1x10^-4^M_J_/Gyr (2.1x10^-3^M_J_/Gyr). These results show that ultranarrowband photometry can reliably quantify absorption in the metastable helium feature.
- ID:
- ivo://CDS.VizieR/J/AJ/154/210
- Title:
- 2015 high-cadence Spitzer microlensing events
- Short Name:
- J/AJ/154/210
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We analyze an ensemble of microlensing events from the 2015 Spitzer microlensing campaign, all of which were densely monitored by ground-based high-cadence survey teams. The simultaneous observations from Spitzer and the ground yield measurements of the microlensing parallax vector {pi}_E_, from which compact constraints on the microlens properties are derived, including ~<25% uncertainties on the lens mass and distance. With the current sample, we demonstrate that the majority of microlenses are indeed in the mass range of M dwarfs. The planet sensitivities of all 41 events in the sample are calculated, from which we provide constraints on the planet distribution function. In particular, assuming a planet distribution function that is uniform in log q, where q is the planet-to-star mass ratio, we find a 95% upper limit on the fraction of stars that host typical microlensing planets of 49%, which is consistent with previous studies. Based on this planet-free sample, we develop the methodology to statistically study the Galactic distribution of planets using microlensing parallax measurements. Under the assumption that the planet distributions are the same in the bulge as in the disk, we predict that ~1/3 of all planet detections from the microlensing campaigns with Spitzer should be in the bulge. This prediction will be tested with a much larger sample, and deviations from it can be used to constrain the abundance of planets in the bulge relative to the disk.