Within a Kilo-Degree Survey (KiDS) Strongly lensed QUAsar Detection project (KiDS-SQuaD), we built a catalogue of bright extragalactic objects from the KiDS DR4, with the main objective to select the reliable gravitationally lensed quasar candidates. We used machine learning algorithm, trained on Sloan Digital Sky Survey DR14 data, to classify sources from subsample (r<22mag) of KiDS DR4 on three classes: stars, quasars and galaxies. Resulting KiDS Bright EXtraGalactic Objects catalogue (KiDS-BEXGO) contains ~6M galaxies and ~0.2M quasars. KiDS-BEXGO represents the first comprehensive identification of bright extragalactic objects in the KiDS DR4 data.
We present a catalog of quasars selected from broad-band photometric ugri data of the Kilo-Degree Survey Data Release 3 (KiDS DR3). The QSOs are identified by the random forest (RF) supervised machine learning model, trained on Sloan Digital Sky Survey (SDSS) DR14 spectroscopic data. We first cleaned the input KiDS data of entries with excessively noisy, missing or otherwise problematic measurements. Applying a feature importance analysis, we then tune the algorithm and identify in the KiDS multiband catalog the 17 most useful features for the classification, namely magnitudes, colors, magnitude ratios, and the stellarity index. We used the t-SNE algorithm to map the multidimensional photometric data onto 2D planes and compare the coverage of the training and inference sets. We limited the inference set to r<22 to avoid extrapolation beyond the feature space covered by training, as the SDSS spectroscopic sample is considerably shallower than KiDS. This gives 3.4 million objects in the final inference sample, from which the random forest identified 190,000 quasar candidates. Accuracy of 97% (percentage of correctly classified objects), purity of 91% (percentage of true quasars within the objects classified as such), and completeness of 87% (detection ratio of all true quasars), as derived from a test set extracted from SDSS and not used in the training, are confirmed by comparison with external spectroscopic and photometric QSO catalogs overlapping with the KiDS footprint. The robustness of our results is strengthened by number counts of the quasar candidates in the r band, as well as by their mid-infrared colors available from the Wide-field Infrared Survey Explorer (WISE). An analysis of parallaxes and proper motions of our QSO candidates found also in Gaia DR2 suggests that a probability cut of pQSO>0.8 is optimal for purity, whereas pQSO>0.7 is preferable for better completeness. Our study presents the first comprehensive quasar selection from deep high-quality KiDS data and will serve as the basis for versatile studies of the QSO population detected by this survey. We publicly release the resulting catalog at http://kids.strw.leidenuniv.nl/DR3/quasarcatalog.php, and the code at https://github.com/snakoneczny/kids-quasars
The Kilo-Degree Survey (KiDS) is an ongoing optical wide-field imaging survey with the OmegaCAM camera at the VLT Survey Telescope. It aims to image 1500 square degrees in four filters (ugri). The core science driver is mapping the large-scale matter distribution in the Universe, using weak lensing shear and photometric redshift measurements. Further science cases include galaxy evolution, Milky Way structure, detection of high-redshift clusters, and finding rare sources such as strong lenses and quasars. Here we present the third public data release (DR3) and several associated data products, adding further area, homogenized photometric calibration, photometric redshifts and weak lensing shear measurements to the first two releases. A dedicated pipeline embedded in the Astro-WISE information system is used for the production of the main release. Modifications with respect to earlier releases are described in detail. Photometric redshifts have been derived using both Bayesian template fitting, and machine-learning techniques. For the weak lensing measurements, optimized procedures based on the THELI data reduction and lensfit shear measurement packages are used. The multi-band catalogue, including homogenized photometry and photometric redshifts, covers the combined DR1, DR2 and DR3 footprint of 440 survey tiles (447deg^2^). Limiting magnitudes are typically 24.3, 25.1, 24.9, 23.8 (5 sigma in a 2 arcsec aperture) in ugri, respectively, and the typical r-band PSF size is less than 0.7 arcsec. The photometric homogenization scheme ensures accurate colors and an absolute calibration stable to ~2% for gri and ~3% in u. Separately released are a weak lensing shear catalogue and photometric redshifts based on two different machine-learning techniques.
The Kilo-Degree Survey (KiDS) is an optical wide-field imaging survey carried out with the VLT Survey Telescope and the OmegaCAM camera. KiDS will image 1500 square degrees in four filters (ugri), and together with its near-infrared counterpart VIKING will produce deep photometry in nine bands. Designed for weak lensing shape and photometric redshift measurements, its core science driver is mapping the large-scale matter distribution in the Universe back to a redshift of ~0.5. Secondary science cases include galaxy evolution, Milky Way structure, and the detection of high-redshift clusters and quasars.
Ultracompact massive galaxies (UCMGs), i.e., galaxies with stellar masses M_*_>8x10^10^M_{sun}_ and effective radii R_e_<1.5kpc, are very rare systems, in particular at low and intermediate redshifts. Their origin as well as their number density across cosmic time are still under scrutiny, especially because of the paucity of spectroscopically confirmed samples. We have started a systematic census of UCMG candidates within the ESO Kilo Degree Survey, together with a large spectroscopic follow-up campaign to build the largest possible sample of confirmed UCMGs. This is the third paper of the series and the second based on the spectroscopic follow-up program. Here, we present photometrical and structural parameters of 33 new candidates at redshifts 0.15<~z<~0.5 and confirm 19 of them as UCMGs, based on their nominal spectroscopically inferred M_*_ and R_e_. This corresponds to a success rate of ~58% , nicely consistent with our previous findings. The addition of these 19 newly confirmed objects allows us to fully assess the systematics on the system selection-and to finally reduce the number density uncertainties. Moreover, putting together the results from our current and past observational campaigns and some literature data, we build the largest sample of ucmgs ever collected, comprising 92 spectroscopically confirmed objects at 0.1<~z<~0.5. This number raises to 116, allowing for a 3{sigma} tolerance on the M_*_ and R_e_ thresholds for the ucmg definition. For all these galaxies, we have estimated the velocity dispersion values at the effective radii, which have been used to derive a preliminary mass-velocity dispersion correlation.
We continue to study star formation in dwarf galaxies located in nearby clusters. Known physical and chemical relations outlining the formation and evolution of dwarfs is compared in different environments, including the Local Volume (LV) and some nearby clusters studied previously. We used the TNG telescope for four nights in 2010 to acquire deep near-infrared imaging in K' of 45 star forming dwarf galaxies located in the Abell 779, Abell 1367, Abell 1656 (Coma), and Abell 2151 (Hercules) clusters. Surface photometry was approached based on past experience by using the sech law to account for the outer old stellar contribution plus a Gaussian component to model the inner starburst, proving the blue compact dwarf (BCD) classification of most targets. Sech central surface brightness, semimajor axis, sech, and total apparent magnitude were measured, allowing to estimate size, absolute luminosity and mass for all targets. The physical correlations between size, central brightness, and NIR luminosity appear to hold, but previously known linear fits break above M_SK_=-19 for Abell 779, Abell 1367 and especially for Hercules, while the dwarf fundamental plane (FP) is probed by only half cluster members, suggesting harassment by the denser cluster environments. Nevertheless, the chemical relations between the oxygen abundance, luminosity, gas mass, baryonic mass, and gas fraction in a closed box model are probed by most members of the four studied clusters, and the starburst grows linearly with the K' luminosity.
As part of an ongoing program on the main parameters of early-type galaxies, we have performed long-slit absorption spectroscopy on a sample of 21 ellipticals and S0s. We present determinations of the central velocity dispersion and, for 18 objects, velocity-dispersion profiles and rotation curves.
We present new kinematical data for a sample of 38 early-type galaxies. Rotation curves and velocity-dispersion profiles are determined for 32 objects, while the central velocity dispersions are given for the whole sample. This is our second paper in a series devoted to the presentation of kinematical data on elliptical and S0 galaxies, derived from long-slit absorption spectroscopy.
We present new kinematical data for a sample of 24 early-type galaxies. Rotation curves and velocity-dispersion profiles are determined for 21 objects, while the central velocity dispersions are given for the whole sample. This is our third paper in a series devoted to the presentation of kinematical data on elliptical and S0 galaxies, derived from long-slit absorption spectroscopy.