Finding active galactic nuclei (AGN) behind the Magellanic Clouds (MCs) is difficult because of the high stellar density in these fields. Although the first AGN behind the Small Magellanic Cloud (SMC) were reported in the 1980s, it is only recently that the number of AGN known behind the SMC has increased by several orders of magnitude. The mid-infrared colour selection technique has proven to be an efficient means of identifying AGN, especially obscured sources. The X-ray regime is complementary in this regard and we use XMM-Newton observations to support the identification of AGN behind the SMC. We present a catalogue of AGN behind the SMC by correlating an updated X-ray point-source catalogue from our XMM-Newton survey of the SMC with previously identified AGN from the literature as well as a list of candidates obtained from the ALLWISE mid-infrared colour-selection criterion. We studied the properties of the sample with respect to their redshifts, luminosities, and X-ray spectral characteristics. We also identified the near-infrared counterpart of the sources from the VISTA observations. The redshift and luminosity distributions of the sample (where known) indicate that we detect sources ranging from nearby Seyfert galaxies to distant and obscured quasars. The X-ray hardness ratios are compatible with those typically expected for AGN, and the VISTA colours and variability are also consistent with AGN. A positive correlation was observed between the integrated X-ray flux (0.2-12keV) and the ALLWISE and VISTA magnitudes. We further present a sample of new candidate AGN and candidates for obscured AGN. Together these make an interesting subset for further follow-up studies. An initial spectroscopic follow-up of 6 out of the 81 new candidates showed that all six sources are active galaxies, although two have narrow emission lines.
We present results of mid-infrared spectroscopic mapping observations of six star-forming regions in the Small Magellanic Cloud (SMC) from the Spitzer Spectroscopic Survey of the SMC (S^4^MC). We detect the mid-IR emission from polycyclic aromatic hydrocarbons (PAHs) in all of the mapped regions, greatly increasing the range of environments where PAHs have been spectroscopically detected in the SMC. We investigate the variations of the mid-IR bands in each region and compare our results to studies of the PAH bands in the SINGS sample and in a sample of low-metallicity starburst galaxies. PAH emission in the SMC is characterized by low ratios of the 6-9um features relative to the 11.3um feature and weak 8.6 and 17.0um features. Interpreting these band ratios in the light of laboratory and theoretical studies, we find that PAHs in the SMC tend to be smaller and less ionized than those in higher metallicity galaxies.
We present near-IR (NIR) and optical observations of the Type Ic supernova (SN Ic) SN 2020oi in the galaxy M100 and the broad-lined SN Ic SN 2020bvc in UGC 9379, using Gemini, Las Cumbres Observatory, Southern Astrophysical Telescope, and other ground-based telescopes. The NIR spectrum of SN 2020oi at day 63 since the explosion shows strong CO emissions and a rising K-band continuum, which is the first unambiguous dust detection from an SN Ic. Non-LTE CO modeling shows that CO is still optically thick and that the lower limit to the CO mass is 10^-3^M_{sun}_. The dust temperature is 810 K, and the dust mass is ~10^-5^M_{sun}_. We explore the possibilities that the dust is freshly formed in the ejecta, heated dust in the preexisting circumstellar medium, and an infrared echo. The light curves of SN 2020oi are consistent with a STELLA model with canonical explosion energy, 0.07M_{sun}_ Ni mass, and 0.7M_{sun}_ ejecta mass. A model of high explosion energy of 10^52^erg, 0.4M_{sun}_ Ni mass, and 6.5M_{sun}_ ejecta mass with the circumstellar matter reproduces the double-peaked light curves of SN 2020bvc. We observe temporal changes of absorption features of the IR CaII triplet, SI at 1.043{mu}m, and FeII at 5169{AA}. The blueshifted lines indicate high velocities, up to 60000km/s for SN 2020bvc and 20000km/s for SN 2020oi, and the expansion velocity rapidly declines before the optical maximum. We present modeled spectral signatures and diagnostics of CO and SiO molecular bands between 1.4 and 10{mu}m.
SNe IIP progenitors. I. LMC giant comparison sample
Short Name:
J/ApJ/886/27
Date:
21 Oct 2021
Publisher:
CDS
Description:
We present the evolution of massive star progenitors of supernovae of type IIP. We take the example of the nearby and well-studied SN2013ej. We explore how convective overshoot affects the stellar structure, surface abundances, and effective temperature of massive stars, using the Modules for Experiments in Stellar Astrophysics. In particular, models with moderate overshoot (f=0.02-0.031) show the presence of blue loops in the Hertzsprung-Russell diagram with a red to blue excursion (log_10_[Teff/K] from <3.6 to >4.0) and transition back to red, during the core helium-burning phase. Models with overshoot outside this range of f values kept the star in the red supergiant state throughout the post-helium-ignition phases. The surface CNO abundance shows enrichment post-main-sequence and again around the time when helium is exhausted in the core. These evolutionary changes in surface CNO abundance are indistinguishable in the currently available observations due to large observational uncertainties. However, these observations may distinguish between the ratio of surface nitrogen to oxygen at different evolutionary stages of the star. We also compare the effects of convective overshoot on various parameters related to likelihood of explosion of a star as opposed to collapse to a black hole. These parameters are the compactness parameter, M_4_, and {mu}_4_. The combination {mu}_4_xM_4_, and {mu}_4_ have similar variations with f and both peak at f=0.032. We find that all of our 13M_{sun}_ models are likely to explode.
We present 8 unpublished low-resolution visual-wavelength spectra of the Type Iax supernova 2012Z ranging from +1.8d to +248.1d relative to B-band maximum. In addition a high-resolution spectrum is presented obtained on -6.4d. Accompanying these data are 7 low-resolution spectra ranging from -9.2d to +33.8d, which were previously published by Foley et al. (2013ApJ...767...57F). The Foley et al. spectra were provided in normalized ascii format, which we have convert to fits format. Finally, we present the most comprehensive set of near-infrared spectra yet obtained for a Type Ia supernova. This includes 10 epochs ranging from -7.3d to +268.8d relative to B-band maximum. For spectra taken with ESO facilities a single fits file is present for each instrumental setup, i.e., each grating has its own fits file. For the FIRE spectra the one-dimensional spectra are stored in fits files as 2048x3 arrays, corresponding to the wavelength, flux and error values for each of the 2048 pixels across the detector. The wavelength and flux are as observed.
SOAR TESS survey. II. Impact of stellar companions
Short Name:
J/AJ/162/192
Date:
14 Mar 2022 06:53:02
Publisher:
CDS
Description:
We present the results of the second year of exoplanet candidate host speckle observations from the SOAR TESS survey. We find 89 of the 589 newly observed TESS planet candidate hosts have companions within 3", resulting in light-curve dilution, that, if not accounted for, leads to underestimated planetary radii. We combined these observations with those from PaperI to search for evidence of the impact binary stars have on planetary systems. Removing the one-quarter of the targets observed identified as false-positive planet detections, we find that transiting planets are suppressed by nearly a factor of seven in close solar-type binaries, nearly twice the suppression previously reported. The result on planet occurrence rates that are based on magnitude-limited surveys is an overestimation by a factor of two if binary suppression is not taken into account. We also find tentative evidence for similar close binary suppression of planets in M-dwarf systems. Last, we find that the high rates of widely separated companions to hot Jupiter hosts previously reported was likely a result of false-positive contamination in our sample.
We present an overview and first results of the Stratospheric Observatory For Infrared Astronomy Massive (SOMA) Star Formation Survey, which is using the FORCAST instrument to image massive protostars from ~10 to 40{mu}m. These wavelengths trace thermal emission from warm dust, which in Core Accretion models mainly emerges from the inner regions of protostellar outflow cavities. Dust in dense core envelopes also imprints characteristic extinction patterns at these wavelengths, causing intensity peaks to shift along the outflow axis and profiles to become more symmetric at longer wavelengths. We present observational results for the first eight protostars in the survey, i.e., multiwavelength images, including some ancillary ground-based mid- infrared (MIR) observations and archival Spitzer and Herschel data. These images generally show extended MIR/FIR emission along directions consistent with those of known outflows and with shorter wavelength peak flux positions displaced from the protostar along the blueshifted, near-facing sides, thus confirming qualitative predictions of Core Accretion models. We then compile spectral energy distributions and use these to derive protostellar properties by fitting theoretical radiative transfer models. Zhang and Tan models, based on the Turbulent Core Model of McKee and Tan, imply the sources have protostellar masses m*~10-50M_{sun}_ accreting at ~10^-4^-10^-3^M_{sun}_/yr inside cores of initial masses Mc~30-500M_{sun}_ embedded in clumps with mass surface densities {Sigma}_cl_~0.1-3g/cm^2^. Fitting the Robitaille et al. models typically leads to slightly higher protostellar masses, but with disk accretion rates ~100x smaller. We discuss reasons for these differences and overall implications of these first survey results for massive star formation theories.
The interstellar delivery of carbon atoms locked into molecules might be one of the key ingredients for the emergence of life. Cyanopolyynes are carbon chains delimited at their two extremities by an atom of hydrogen and a cyano group, meaning that they could be excellent reservoirs of carbon. The simplest member, HC_3_N, is ubiquitous in the galactic interstellar medium and found also in external galaxies. Thus, understanding the growth of cyanopolyynes in regions forming stars similar to our Sun, and what affects them, is particularly relevant. In the framework of the IRAM/NOEMA Large Program SOLIS (Seeds Of Life In Space), we have obtained a map of two cyanopolyynes, HC_3_N and HC_5_N, in the protocluster OMC-2 FIR4. Because our Sun is thought to be born in a rich cluster, OMC-2 FIR4 is one of the closest and best known representatives of the environment in which the Sun may have been born. We find a HC_3_N/HC_5_N abundance ratio across the source in the range ~1-30, with the smallest values (<10) in FIR5 and in the Eastern region of FIR4. The ratios <=10 can be reproduced by chemical models only if: (1) the cosmic-ray ionisation rate z is ~4x10^-14^s^-1^; (2) the gaseous elemental ratio C/O is close to unity; and (3) oxygen and carbon are largely depleted. The large z is comparable to that measured in FIR4 by previous works and was interpreted as due to a flux of energetic (>10MeV) particles from embedded sources. We suggest that these sources could lie East of FIR4 and FIR5.
SONYC - Substellar Objects in Nearby Young Clusters - is a program to investigate the frequency and properties of young substellar objects with masses down to a few times that of Jupiter. In a series of papers we have obtained follow-up spectroscopy for a large number of candidate very low mass (VLM) members of the ~1Myr old cluster NGC1333 in the Perseus star forming region. For more details on the survey, see the associated paper (Scholz et al., 2012ApJ...744....6S). Here we present a census of spectroscopically confirmed very low mass objects in NGC1333. We include all objects with spectral type of M5 or later and/or effective temperature of 3200K or cooler. In total, there are now 58 objects which fulfill these criteria. In three tables we list photometric and spectroscopic properties for our own sample as well as for objects listed in the literature. In addition, we also include three tables of the objects that have been rejected as very low mass cluster members based on our spectroscopic follow-up. Finally, we attach the two photometric candidate lists from which the spectroscopic sample was extracted, see Scholz et al. (2012ApJ...756...24S) for more details on these catalogues.
SONYC - Substellar Objects in Nearby Young Clusters - is a survey program to investigate the frequency and properties of substellar objects with masses down to a few times that of Jupiter in nearby star-forming regions. In two papers of the SONYC series we have obtained follow-up spectroscopy for a large number of candidate very low ma ss (VLM) members of the ~1Myr old cluster rho Ophiuchi. For more details on the survey, see the associated paper (Muzic et al., 2012ApJ...744..134M). Here we publish the two catalogues of photometric candidate members from which the spectroscopic samples were extracted (see Geers et al. 2011ApJ...726...23G and Muzic et al. 2012ApJ...744..134M for more details on these catalogues). We include a table containing all the spectroscopically confirmed VLM members of the cluster observed within the SONYC campaign. We also attach and a table with all the objects that have been rejected as VLM members based on our spectroscopic follow-up. The majority of these latter objects are expected to be background contaminants, although some of them could also be embedded cluster members with spectral types earlier than M.