Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/497/330
- Title:
- Candidate main-sequence stars
- Short Name:
- J/ApJ/497/330
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Vega-like sources are main-sequence stars that exhibit IR fluxes in excess of expectations for stellar photospheres, most likely due to reradiation of stellar emission intercepted by orbiting dust grains. We have identified a large sample of main-sequence stars with possible excess IR radiation by cross-correlating the Michigan Catalog of Two-dimensional Spectral Types for the HD Stars with the IRAS Faint Source Survey Catalog. Some 60 of these Vega-like sources were not found during previous surveys of the IRAS database, the majority of which employed the lower sensitivity Point Source Catalog. Here, we provide details of our search strategy, together with a preliminary examination of the full sample of Vega-like sources.
- ID:
- ivo://CDS.VizieR/J/ApJ/751/22
- Title:
- Candidates of the {rho} Oph cluster
- Short Name:
- J/ApJ/751/22
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a general method for identifying the pre-main-sequence population of any star-forming region, unbiased with respect to the presence or absence of disks, in contrast to samples selected primarily via their mid-infrared emission from Spitzer surveys. We have applied this technique to a new, deep, wide-field, near-infrared imaging survey of the {rho} Ophiuchi cloud core to search for candidate low-mass members. In conjunction with published Spitzer IRAC photometry and least-squares fits of model spectra (COND, DUSTY, NextGen, and blackbody) to the observed spectral energy distributions, we have identified 948 candidate cloud members within our 90% completeness limits of J=20.0, H=20.0, and Ks=18.50. This population represents a factor of ~3 increase in the number of known young stellar objects in the {rho}} Ophiuchi cloud. A large fraction of the candidate cluster members (81%+/-3%) exhibit infrared excess emission consistent with the presence of disks, thus strengthening the possibility of their being bona fide cloud members. Spectroscopic follow-up will confirm the nature of individual objects, better constrain their parameters, and allow an initial mass function to be derived.
- ID:
- ivo://CDS.VizieR/J/ApJ/825/38
- Title:
- Carbon and oxygen isotopic ratios for nearby Miras
- Short Name:
- J/ApJ/825/38
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Carbon and oxygen isotopic ratios are reported for a sample of 46 Mira and SRa-type variable asymptotic giant branch (AGB) stars. Vibration-rotation first and second-overtone CO lines in 1.5-2.5{mu}m spectra were measured to derive isotopic ratios for ^12^C/^13^C, ^16^O/^17^O, and ^16^O/^18^O. Comparisons with previous measurements for individual stars and with various samples of evolved stars, as available in the extant literature, are discussed. Models for solar composition AGB stars of different initial masses are used to interpret our results. We find that the majority of M-stars have main sequence masses <=2M_{sun}_ and have not experienced sizable third dredge-up (TDU) episodes. The progenitors of the four S-type stars in our sample are slightly more massive. Of the six C-stars in the sample three have clear evidence relating their origin to the occurrence of TDU. Comparisons with O-rich presolar grains from AGB stars that lived before the formation of the solar system reveal variations in the interstellar medium chemical composition. The present generation of low-mass AGB stars, as represented by our sample of long period variables (LPVs), shows a large spread of ^16^O/^17^O ratios, similar to that of group 1 presolar grains and in agreement with theoretical expectations for the composition of mass 1.2-2M_{sun}_ stars after the first dredge-up. In contrast, the ^16^O/^18^O ratios of present-day LPVs are definitely smaller than those of group 1 grains. This is most probably a consequence of the the decrease with time of the ^16^O/^18^O ratio in the interstellar medium due to the chemical evolution of the Milky Way. One star in our sample has an O composition similar to that of group 2 presolar grains originating in an AGB star undergoing extra-mixing. This may indicate that the extra-mixing process is hampered at high metallicity, or, equivalently, favored at low metallicity. Similarly to O-rich grains, no star in our sample shows evidence of hot bottom burning, which is expected for massive AGB stars.
- ID:
- ivo://CDS.VizieR/J/A+A/632/A32
- Title:
- Carbon depletion observed inside T Tauri inner rims
- Short Name:
- J/A+A/632/A32
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The carbon content of protoplanetary disks is an important parameter to characterize planets formed at different disk radii. There is some evidence from far-infrared and submillimeter observations that gas in the outer disk is depleted in carbon, with a corresponding enhancement of carbon-rich ices at the disk midplane. Observations of the carbon content inside of the inner sublimation rim could confirm how much cpc on remains locked in kilometer size bodies in the disk. I aim to determine the density, temperature, and carbon abundance inside the disk dust sublimation rim in a set of T Tauri stars with full protoplanetary disks. Using medium-resolution, near-infrared (0.8 to 2.5um) spectra and the new GAIA DR2 distances, I self-consistently determine the stellar, extinction, veiling, and accretion properties of the 26 stars in my sample. From these values, and non-accreting T Tauri spectral templates, I extract the inner disk excess of the target stars from their observed spectra. Then I identify a series of C0 recombination lines in 18 of these disks and use the CHIANTI atomic line database with an optically thin slab model to constrain the average ne, Te, and nC for these lines in the five disks with a complete set of lines. By comparing these values with other slab models of the inner disk using the Cloudy photoionization code, I also constrain nH and the carbon abundance, XC, and hence the amount of carbon 'missing' from the slab. For one disk, DR Tau, I use relative abundances for the accretion stream from the literature to also determine XSi and XN . The inner disks modeled here are extremely dense (nH~10^16^cm^-3^), warm (Te~4500K), and moderately ionized (logXe~3.3). Three of the five modeled disks show robust carbon depletion up to a factor of 42 relative to the solar value. I discuss multiple ways in which the 'missing' carbon could be locked out of the accreting gas. Given the high-density inner disk gas, evidence for radial drift, and lack of obvious gaps in these three systems, their carbon depletion is most consistent with the 'missing' carbon being sequestered in kilometer size bodies. For DR Tau, nitrogen and silicon are also depleted by factors of 45 and 4, respectively, suggesting that the kilometer size bodies into which the grains are locked were formed beyond the N_2_ snowline. I explore briefly what improvements in the models and observations are needed to better address this topic in the future.
- ID:
- ivo://CDS.VizieR/J/ApJS/234/31
- Title:
- Carbon stars from LAMOST using machine learning
- Short Name:
- J/ApJS/234/31
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In this work, we present a catalog of 2651 carbon stars from the fourth Data Release (DR4) of the Large Sky Area Multi-Object Fiber Spectroscopy Telescope (LAMOST). Using an efficient machine-learning algorithm, we find these stars from more than 7 million spectra. As a by-product, 17 carbon-enhanced metal- poor turnoff star candidates are also reported in this paper, and they are preliminarily identified by their atmospheric parameters. Except for 176 stars that could not be given spectral types, we classify the other 2475 carbon stars into five subtypes: 864 C-H, 226 C-R, 400 C-J, 266 C-N, and 719 barium stars based on a series of spectral features. Furthermore, we divide the C-J stars into three subtypes, C-J(H), C-J(R), and C-J(N), and about 90% of them are cool N-type stars as expected from previous literature. Besides spectroscopic classification, we also match these carbon stars to multiple broadband photometries. Using ultraviolet photometry data, we find that 25 carbon stars have FUV detections and that they are likely to be in binary systems with compact white dwarf companions.
- ID:
- ivo://CDS.VizieR/J/A+A/330/505
- Title:
- Carbon stars IR emission
- Short Name:
- J/A+A/330/505
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Spectroscopic and photometric data relative to a sample of 55 carbon stars showing the 11.3{mu}m feature have been fitted in the wavelength range between 0.4 and 100{mu}m by means of a radiative transfer model using the laboratory extinction spectra of amorphous carbon and silicon carbide (SiC) grains. The transfer code allows to determine in a self-consistent way the grain equilibrium temperature of the various species at different distances from the central star and gives all the relevant circumstellar parameters which can be very important for the evolutionary study of carbon stars. In order to get meaningful information on the nature and physical properties of the dust grains responsible for the 11.3{mu}m feature and the underlying continuum, the fitting procedure of the spectr a has been applied individually to every single source. For this reason it has been possible to take into account any variation in position and shape of the band from source to source. Our analysis show that all the sources, in addition to the amorphous carbon grains accounting for the continuum emission, need always the presence of {alpha}-SiC particles while some of them require also {beta}-SiC. Moreover, the presence of one or both types of SiC particles seems not correlated neither with the total optical thickness nor with any other physical and geometrical parameters of the circumstellar envelope. The best-fit parameters found in this work have been used to calculate the mass-loss rate from the central stars. The clear correlation, that we find between the strength of the SiC feature and the total mass loss-rate, confirms the results already found by other authors for the same kind of sources and derived from the observed CO emission lines.
- ID:
- ivo://CDS.VizieR/J/ApJ/900/42
- Title:
- CARMENES obs. of the binary system LB-1
- Short Name:
- J/ApJ/900/42
- Date:
- 21 Mar 2022 09:26:37
- Publisher:
- CDS
- Description:
- The mass, origin, and evolutionary stage of the binary system LB-1 have been intensely debated, following the claim that it hosts an ~70M_{sun}_ black hole, in stark contrast with the expectations for Galactic remnants. We conducted a high-resolution, phase-resolved spectroscopic study of its Paschen lines, using the Calar Alto 3.5m telescope. We find that Pa{beta} and Pa{gamma} (after subtraction of the stellar absorption component) are well fitted with a standard double-peaked disk profile. We measured the velocity shifts of the red and blue peaks at 28 orbital phases: the line center has an orbital motion in perfect antiphase with the secondary, and the radial velocity amplitude ranges from 8 to 13km/s, for different methods of profile modeling. We interpret this curve as proof that the disk traces the orbital motion of the primary, ruling out the circumbinary disk and the hierarchical triple scenarios. The phase-averaged peak-to-peak half-separation (a proxy for the projected rotational velocity of the outer part of the disk) is ~70km/s, larger than the orbital velocity of the secondary and inconsistent with a circumbinary disk. From those results, we infer a primary mass 4-8 times higher than the secondary mass. Moreover, we show that the intensity ratio of the blue and red peaks has a sinusoidal behavior in phase with the secondary, which we attribute to external irradiation of the outer part of the disk. Finally, we discuss our findings in the context of competing scenarios proposed for LB-1. Further astrometric Gaia data will test between alternative solutions.
- ID:
- ivo://CDS.VizieR/J/ApJS/244/14
- Title:
- Cassini CIRS observations of Titan 2004-2017
- Short Name:
- J/ApJS/244/14
- Date:
- 28 Dec 2021 09:28:19
- Publisher:
- CDS
- Description:
- From 2004 to 2017, the Cassini spacecraft orbited Saturn, completing 127 close flybys of its largest moon, Titan. Cassini's Composite Infrared Spectrometer (CIRS), one of 12 instruments carried on board, profiled Titan in the thermal infrared (7-1000{mu}m) throughout the entire 13yr mission. CIRS observed on both targeted encounters (flybys) and more distant opportunities, collecting 8.4 million spectra from 837 individual Titan observations over 3633hr. Observations of multiple types were made throughout the mission, building up a vast mosaic picture of Titan's atmospheric state across spatial and temporal domains. This paper provides a guide to these observations, describing each type and chronicling its occurrences and global-seasonal coverage. The purpose is to provide a resource for future users of the CIRS data set, as well as those seeking to put existing CIRS publications into the overall context of the mission, and to facilitate future intercomparison of CIRS results with those of other Cassini instruments and ground-based observations.
- ID:
- ivo://CDS.VizieR/J/MNRAS/424/2442
- Title:
- Catalog of bubbles from Milky Way Project
- Short Name:
- J/MNRAS/424/2442
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a new catalogue of 5106 infrared bubbles created through visual classification via the online citizen science website The Milky Way Project. Bubbles in the new catalogue have been independently measured b at least five individuals, producing consensus parameters for their position, radius, thickness, eccentricity and position angle. Citizen scientists - volunteers recruited online and taking part in this research - have independently rediscovered the locations of at least 86 percent of three widely used catalogues of bubbles and HII regions whilst finding an order of magnitude more objects. 29 per cent of the Milky Way Project catalogue bubbles lie on the rim of a larger bubble, or have smaller bubbles located within them, opening up the possibility of better statistical studies of triggered star formation. Also outlined is the creation of a heat map of star formation activity in the Galactic plane. This online resource provides a crowd-sourced map of bubbles and arcs in the Milky Way, and will enable better statistical analysis of Galactic star formation sites.