- ID:
- ivo://CDS.VizieR/J/AJ/143/149
- Title:
- NIR spectroscopy of Galactic Wolf-Rayet stars. II.
- Short Name:
- J/AJ/143/149
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We are continuing a J, K and narrowband imaging survey of 300{deg}^2^ of the plane of the Galaxy, searching for new Wolf-Rayet (W-R) stars. Our survey spans 150{deg} in Galactic longitude and reaches 1{deg} above and below the Galactic plane. The survey has a useful limiting magnitude of K=15 over most of the observed Galactic plane, and K=14 (due to severe crowding) within a few degrees of the Galactic center. Thousands of emission-line candidates have been detected. In spectrographic follow-ups of 146 relatively bright W-R star candidates, we have re-examined 11 previously known WC and WN stars and discovered 71 new W-R stars, 17 of type WN and 54 of type WC. Our latest image analysis pipeline now picks out W-R stars with a 57% success rate. Star subtype assignments have been confirmed with the K-band spectra and distances approximated using the method of spectroscopic parallax. Some of the new W-R stars are among the most distant known in our Galaxy. The distribution of these new W-R stars is beginning to trace the locations of massive stars along the distant spiral arms of the Milky Way.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/MNRAS/452/2858
- Title:
- NIR spectroscopy of Galactic WR stars. III
- Short Name:
- J/MNRAS/452/2858
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- A new method of image subtraction is applied to images from a J, K, and narrow-band imaging survey of 300 deg2 of the plane of the Galaxy, searching for new Wolf-Rayet (WR) stars. Our survey spans 150{deg} in Galactic longitude and reaches b=+/-1{deg} with respect to the Galactic plane. The survey has a useful limiting magnitude of K=15 over most of the observed Galactic plane, and K=14 (due to severe crowding) within a few degrees of the Galactic Centre. The new image subtraction method described here (better than aperture or even point-spread-function photometry in very crowded fields) detected several thousand emission-line candidates. In 2011 and 2012 June and July, we spectroscopically followed up on 333 candidates with MDM-TIFKAM and Infrared Telescope Facility (IRTF)-SpeX, discovering 89 emission-line sources. These include 49 WR stars, 43 of them previously unidentified, including the most distant known Galactic WR stars, more than doubling the number on the far side of the Milky Way. We also demonstrate our survey's ability to detect very faint planetary nebulae and other NIR emission objects.
- ID:
- ivo://CDS.VizieR/J/AJ/154/112
- Title:
- NIR spectroscopy of new L and T dwarf candidates
- Short Name:
- J/AJ/154/112
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the final results from a targeted search for brown dwarfs with unusual near-infrared colors. From a positional cross-match of the Sloan Digital Sky Survey (SDSS), 2-Micron All-Sky Survey (2MASS), and Wide-Field Infrared Survey Explorer (WISE) catalogs, we have identified 144 candidate peculiar L and T dwarfs. Spectroscopy confirms that 20 of the objects are peculiar or are candidate binaries. Of the 420 objects in our full sample 9 are young (<~200Myr; 2.1%) and another 8 (1.9%) are unusually red, with no signatures of youth. With a spectroscopic J-K_s_ color of 2.58+/-0.11mag, one of the new objects, the L6 dwarf 2MASS J03530419+0418193, is among the reddest field dwarfs currently known and is one of the reddest objects with no signatures of youth known to date. We have also discovered another potentially very-low-gravity object, the L1 dwarf 2MASS J00133470+1109403, and independently identified the young L7 dwarf 2MASS J00440332+0228112, which was first reported by Schneider and collaborators. Our results confirm that signatures of low gravity are no longer discernible in low to moderate resolution spectra of objects older than ~200Myr. The 1.9% of unusually red L dwarfs that do not show other signatures of youth could be slightly older, up to ~400Myr. In this case a red J-K_s_ color may be more diagnostic of moderate youth than individual spectral features. However, its is also possible that these objects are relatively metal-rich, and thus have enhanced atmospheric dust content.
- ID:
- ivo://CDS.VizieR/J/ApJ/817/55
- Title:
- NIR spectroscopy of 1.5<z<3.5 broad-band QSOs
- Short Name:
- J/ApJ/817/55
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We study the rest-frame optical properties of 74 luminous (L_bol_=10^46.2-48.2^erg/s), 1.5<z<3.5 broad-line quasars with near-IR (JHK) slit spectroscopy. Systemic redshifts based on the peak of the [OIII]{lambda}5007 line reveal that redshift estimates from the rest-frame UV broad emission lines (mostly MgII) are intrinsically uncertain by ~200km/s (measurement errors accounted for). The overall full-width-at-half-maximum of the narrow [OIII] line is ~1000km/s on average. A significant fraction of the total [OIII] flux (~40%) is in a blueshifted wing component with a median velocity offset of ~700km/s, indicative of ionized outflows within a few kpc from the nucleus; we do not find evidence of significant [OIII] flux beyond ~10kpc in our slit spectroscopy. The [OIII] line is noticeably more asymmetric and weaker than that in typical less luminous low-z quasars. However, when matched in quasar continuum luminosity, low-z quasars have similar [OIII] profiles and strengths as these high-z systems. Therefore the exceptionally large width and blueshifted wing, and the relatively weak strength of [OIII] in high-z luminous quasars are mostly a luminosity effect rather than redshift evolution. The H{beta}-[OIII] region of these high-z quasars displays a similar spectral diversity and Eigenvector 1 correlations with anti-correlated [OIII] and optical FeII strengths, as seen in low-z quasars; but the average broad H{beta} width is larger by 25% than typical low-z quasars, indicating more massive black holes in these high-z systems. These results highlight the importance of understanding [OIII] in the general context of quasar parameter space in order to understand quasar feedback in the form of [OIII] outflows. The calibrated one-dimensional near-IR spectra are made publicly available, along with a composite spectrum.
- ID:
- ivo://CDS.VizieR/J/A+A/605/L9
- Title:
- NIR spectrum of exoplanet HIP 65426b
- Short Name:
- J/A+A/605/L9
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The SHINE program is a high-contrast near-infrared survey of 600 young, nearby stars aimed at searching for and characterizing new planetary systems using VLT/SPHERE's unprecedented high-contrast and high-angular-resolution imaging capabilities. It is also intended to place statistical constraints on the rate, mass and orbital distributions of the giant planet population at large orbits as a function of the stellar host mass and age to test planet-formation theories. We used the IRDIS dual-band imager and the IFS integral field spectrograph of SPHERE to acquire high-contrast coronagraphic differential near-infrared images and spectra of the young A2 star HIP 65426. It is a member of the ~17Myr old Lower Centaurus-Crux association. At a separation of 830 mas (92au projected) from the star, we detect a faint red companion. Multi-epoch observations confirm that it shares common proper motion with HIP 65426. Spectro-photometric measurements extracted with IFS and IRDIS between 0.95 and 2.2{mu}m indicate a warm, dusty atmosphere characteristic of young low-surface-gravity L5-L7 dwarfs. Hot-start evolutionary models predict a luminosity consistent with a 6-12M_Jup_, T_eff_=1300-1600K and R=1.5+/-0.1R_Jup_ giant planet. Finally, the comparison with Exo-REM and PHOENIX BT-Settl synthetic atmosphere models gives consistent effective temperatures but with slightly higher surface gravity solutions of log(g)=4.0-5.0 with smaller radii (1.0-1.3R_Jup_). Given its physical and spectral properties, HIP 65426 b occupies a rather unique placement in terms of age, mass, and spectral-type among the currently known imaged planets. It represents a particularly interesting case to study the presence of clouds as a function of particle size, composition, and location in the atmosphere, to search for signatures of non-equilibrium chemistry, and finally to test the theory of planet formation and evolution.
- ID:
- ivo://CDS.VizieR/J/A+A/634/L6
- Title:
- NIR spectrum of interstellar object 2I/Borisov
- Short Name:
- J/A+A/634/L6
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Interstellar objects (ISOs) passing through our Solar System offer a rare opportunity to probe the physical and chemical processes involved in solid body and planet formation in extrasolar systems. The main objective of our study is to search for diagnostic absorption features of water ice in the near-infrared (NIR) spectrum of the second interstellar object 2I/2019 Q4 (Borisov) and compare its ice features to those of the Solar System icy objects. We observed 2I in the NIR on three separate occasions. The first observation was made on 2019 September 19 UT using the SpeX spectrograph at the 3m IRTF and again on September 24 UT with the GNIRS spectrograph at the 8m GEMINI telescope; the last observation was made on October 09 UT with IRTF. The spectra obtained from all three nights appear featureless. No absorption features associated with water ice are detected. Spectral modeling suggests that water grains, if present, comprise no more than 10% of the coma cross section. The comet consistently exhibits a red D-type like spectrum with a spectral slope of about 6% per 1000~\AA, which is similar to that of 1I/'Oumuamua and is comparable to Solar System comets.
- ID:
- ivo://CDS.VizieR/J/A+A/547/A17
- Title:
- NIR spectrum of NGC1705-1
- Short Name:
- J/A+A/547/A17
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We study the near-infrared properties of the super star cluster NGC1750-1 to constrain its spatial extent, its stellar population, and its age.
- ID:
- ivo://CDS.VizieR/J/AJ/156/178
- Title:
- NIR transmission spectra of TRAPPIST-1 planets
- Short Name:
- J/AJ/156/178
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The seven approximately Earth-sized transiting planets in the TRAPPIST-1 system provide a unique opportunity to explore habitable- and nonhabitable-zone small planets within the same system. Its habitable-zone exoplanets - due to their favorable transit depths - are also worlds for which atmospheric transmission spectroscopy is within reach with the Hubble Space Telescope (HST) and James Webb Space Telescope (JWST). We present here an independent reduction and analysis of two HST Wide Field Camera 3 (WFC3) near-infrared transit spectroscopy data sets for six planets (b through g). Utilizing our physically motivated detector charge-trap correction and a custom cosmic-ray correction routine, we confirm the general shape of the transmission spectra presented by de Wit et al. (2016Natur.537...69D). Our data reduction approach leads to a 25% increase in the usable data and reduces the risk of confusing astrophysical brightness variations (e.g., flares) with instrumental systematics. No prominent absorption features are detected in any individual planet's transmission spectra; by contrast, the combined spectrum of the planets shows a suggestive decrease around 1.4 {mu}m similar to an inverted water absorption feature. Including transit depths from K2, the SPECULOOS-South Observatory, and Spitzer, we find that the complete transmission spectrum is fully consistent with stellar contamination owing to the transit light source effect. These spectra demonstrate how stellar contamination can overwhelm planetary absorption features in low-resolution exoplanet transit spectra obtained by HST and JWST and also highlight the challenges in combining multi-epoch observations for planets around rapidly rotating spotted stars.
859. NOIRCAT sources
- ID:
- ivo://CDS.VizieR/J/MNRAS/399/2264
- Title:
- NOIRCAT sources
- Short Name:
- J/MNRAS/399/2264
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the Northern HIPASS (HI Parkes All-Sky Survey) Optical/Infrared Catalogue (NOIRCAT), an optical/near-infrared (NIR) counterpart to the Northern HIPASS Catalogue (NHICAT). Of the 1002 sources in NHICAT, 655 (66 per cent) have optical counterparts with matching optical velocities. A further 85 (8 per cent) sources have optical counterparts with matching velocities from previous radio emission-line surveys.
- ID:
- ivo://CDS.VizieR/J/A+A/384/473
- Title:
- O, B and Be stars equivalent widths
- Short Name:
- J/A+A/384/473
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present an atlas of spectra of O- and B-type stars, obtained with the Short Wavelength Spectrometer (SWS) during the Post-Helium program of the Infrared Space Observatory (ISO). This program is aimed at extending the Morgan & Keenan (1973ARA&A..11...29M) classification scheme into the near-infrared. Later type stars will be discussed in a separate publication. The observations consist of 57 SWS Post-Helium spectra from 2.4 to 4.1{mu}m, supplemented with 10 spectra acquired during the nominal mission with a similar observational setting. For B-type stars, this sample provides ample spectral coverage in terms of subtype and luminosity class. For O-type stars, the ISO sample is coarse and therefore is complemented with 8 UKIRT L'-band observations. In terms of the presence of diagnostic lines, the L'-band is likely the most promising of the near-infrared atmospheric windows for the study of the physical properties of B stars. Specifically, this wavelength interval contains the Br{alpha}, Pf{gamma}, and other Pfund lines which are probes of spectral type, luminosity class and mass loss. Here, we present simple empirical methods based on the lines present in the 2.4 to 4.1{mu}m interval that allow the determination of i) the spectral type of B dwarfs and giants to within two subtypes; ii) the luminosity class of B stars to within two classes; iii) the mass-loss rate of O stars and B supergiants to within 0.25dex.