The PSCz survey consists of redshifts, infra-red and optical photometry, and assorted other information for 18351 IRAS sources, mostly selected from the Point Source Catalog. The survey was designed to select almost all galaxies with flux brighter than 0.595Jy at 60 microns, over the 84% of the sky with extinction small enough that reliable and complete optical identification and spectroscopy was possible. Some of the sources are not galaxies and some are multiple entries for the same galaxy as described below. There are in total 15411 galaxies or possible galaxies, for which redshifts are available for 14677. The galaxies without redshift are mostly distant or at low latitude, as described below. Many of these galaxies have now been observed as part of the BTP project (Saunders et al 1999, astro-ph/9909174 "The Behind the Plane Survey"), and their redshifts will be included in future revisions of the catalogue. The main catalogue is "pscz.dat". There is also a short version of the catalogue, "psczvs.dat", containing sufficient information for most studies. They correspond to the version 2.2.
The Vista Variables in the Via Lactea (VVV) survey has performed a multi-epoch near-infrared imaging of the inner Galactic plane. High-fidelity photometric catalogs are needed to utilize the data. We aim at producing a deep, point-spread-function (PSF) photometric catalog for the VVV survey J, H, and Ks band data. Specifically, we aim at taking advantage of all the epochs of the survey to reach high limiting magnitudes. We develop an automatic PSF-fitting pipeline based on the DaoPHOT algorithm and perform photometry on the stacked VVV images in J, H, and Ks bands. We present a PSF photometric catalog in the Vega system that contains about 926 million sources in the J, H, and Ks filters. About 10% of the sources are flagged as possible spurious detections. The 5 sigma limiting magnitudes of the sources with high reliability are about 20.8, 19.5, and 18.7mag in the J, H, and Ks band, respectively, depending on the local crowding condition. Our photometric catalog reaches on average about one magnitude deeper than the previously released PSF DoPHOT photometric catalog. It also includes less spurious detections. There are significant differences in the brightnesses of faint sources between our catalog and the previously released one. The likely origin of these differences is in the different photometric algorithms that are utilized; it is not straightforward to assess which catalog is more accurate in which situations. Our new catalog is beneficial especially for science goals that require high limiting magnitudes; our catalog reaches such in fields that have a relatively uniform source number density. Overall, the limiting magnitudes and completeness are different in the fields with different crowding conditions.
PS1 light curves and rotation periods of new asteroids
Short Name:
J/AJ/159/25
Date:
21 Oct 2021
Publisher:
CDS
Description:
The intranight trajectories of asteroids can be approximated by straight lines, and so are their intranight detections. Therefore, the Hough transform, a line detecting algorithm, can be used to connect the line-up detections to find asteroids. We applied this algorithm to a high-cadence Pan-STARRS 1 (PS1) observation, which was originally designed to collect asteroid light curves for rotation period measurements. The algorithm recovered most of the known asteroids in the observing fields and, moreover, discovered 3574 new asteroids with magnitude mainly of 21.5<w_p1_<22.5mag. This magnitude range is equivalent to subkilometer main-belt asteroids (MBAs), which usually lack rotation period measurements due to their faintness. Using the light curves of the 3574 new asteroids, we obtained 122 reliable rotation periods, of which 13 are super-fast rotators (SRFs; i.e., rotation period of <2hr). The required cohesion to survive these SFRs range from tens to thousands of Pa, a value consistent with the known SFRs and the regolith on the Moon and Mars. The higher chance of discovering SFRs here suggests that subkilometer MBAs probably harbor more SFRs.
We make use of individual (epoch) detection data from the Pan-STARRS "3{pi}" survey for 2863 optical ICRF3 counterparts in the five wavelength bands g, r, i, z, and y, published as part of the Data Release 2. A dedicated method based on the Functional Principal Component Analysis is developed for these sparse and irregularly sampled data. With certain regularization and normalization constraints, it allows us to obtain uniform and compatible estimates of the variability amplitudes and average magnitudes between the passbands and objects. We find that the starting assumption of affinity of the light curves for a given object at different wavelengths is violated for several percent of the sample. The distributions of rms variability amplitudes are strongly skewed toward small values, peaking at ~0.1mag with tails stretching to 2mag. Statistically, the lowest variability is found for the r band and the largest for the reddest y band. A small "brighter-redder" effect is present, with amplitudes in y greater than amplitudes in g in 57% of the sample. The variability versus redshift dependence shows a strong decline with z toward redshift 3, which we interpret as the time dilation of the dominant time frequencies. The colors of radio-loud ICRF3 quasars are correlated with redshift in a complicated, wavy pattern governed by the emergence of brightest emission lines within the five passbands.
PS1 proper-motion survey for brown dwarfs. I. Taurus
Short Name:
J/ApJ/858/41
Date:
21 Oct 2021
Publisher:
CDS
Description:
We are conducting a proper-motion survey for young brown dwarfs in the Taurus-Auriga molecular cloud based on the Pan-STARRS1 3{pi} Survey. Our search uses multi-band photometry and astrometry to select candidates, and is wider (370deg^2^) and deeper (down to ~3M_Jup_) than previous searches. We present here our search methods and spectroscopic follow-up of our high-priority candidates. Since extinction complicates spectral classification, we have developed a new approach using low-resolution (R~100) near-infrared spectra to quantify reddening-free spectral types, extinctions, and gravity classifications for mid-M to late-L ultracool dwarfs (<=100-3M_Jup_ in Taurus). We have discovered 25 low-gravity (VL-G) and the first 11 intermediate-gravity (INT-G) substellar (M6-L1) members of Taurus, constituting the largest single increase of Taurus brown dwarfs to date. We have also discovered 1 new Pleiades member and 13 new members of the Perseus OB2 association, including a candidate very wide separation (58kau) binary. We homogeneously reclassify the spectral types and extinctions of all previously known Taurus brown dwarfs. Altogether our discoveries have thus far increased the substellar census in Taurus by ~40% and added three more L-type members (<~5-10M_Jup_). Most notably, our discoveries reveal an older (>10Myr) low-mass population in Taurus, in accord with recent studies of the higher-mass stellar members. The mass function appears to differ between the younger and older Taurus populations, possibly due to incompleteness of the older stellar members or different star formation processes.
We present griz_P1_ light curves of 146 spectroscopically confirmed Type Ia supernovae (SNe Ia; 0.03<z<0.65) discovered during the first 1.5yr of the Pan-STARRS1 Medium Deep Survey. The Pan-STARRS1 natural photometric system is determined by a combination of on-site measurements of the instrument response function and observations of spectrophotometric standard stars. We find that the systematic uncertainties in the photometric system are currently 1.2% without accounting for the uncertainty in the Hubble Space Telescope Calspec definition of the AB system. A Hubble diagram is constructed with a subset of 113 out of 146 SNe Ia that pass our light curve quality cuts. The cosmological fit to 310 SNe Ia (113 PS1 SNe Ia + 222 light curves from 197 low-z SNe Ia), using only supernovae (SNe) and assuming a constant dark energy equation of state and flatness, yields {omega}=-1.120_-0.206_^+0.360^(Stat)_-0.291_^+0.269^(Sys). When combined with BAO+CMB(Planck)+H_0_, the analysis yields {Omega}_M_=0.280_-0.012_^+0.013^ and {omega}=-1.166_-0.069_^+0.072^ including all identified systematics. The value of w is inconsistent with the cosmological constant value of -1 at the 2.3{sigma} level. Tension endures after removing either the baryon acoustic oscillation (BAO) or the H_0_ constraint, though it is strongest when including the H_0_ constraint. If we include WMAP9 cosmic microwave background (CMB) constraints instead of those from Planck, we find {omega}=-1.124_-0.065_^+0.083^, which diminishes the discord to <2{sigma}. We cannot conclude whether the tension with flat {Lambda}CDM is a feature of dark energy, new physics, or a combination of chance and systematic errors. The full Pan-STARRS1 SN sample with ~three times as many SNe should provide more conclusive results.
We present light curves and classification spectra of 17 hydrogen-poor superluminous supernovae (SLSNe) from the Pan-STARRS1 Medium Deep Survey (PS1 MDS). Our sample contains all objects from the PS1 MDS sample with spectroscopic classification that are similar to either of the prototypes SN 2005ap or SN 2007bi, without an explicit limit on luminosity. With a redshift range 0.3<z<1.6, PS1 MDS is the first SLSN sample primarily probing the high-redshift population; our multifilter PS1 light curves probe the rest- frame UV emission, and hence the peak of the spectral energy distribution. We measure the temperature evolution and construct bolometric light curves, and find peak luminosities of (0.5-5)x10^44^erg/s and lower limits on the total radiated energies of (0.3-2)x10^51^erg. The light curve shapes are diverse, with both rise and decline times spanning a factor of ~5 and several examples of double-peaked light curves. When correcting for the flux-limited nature of our survey, we find a median peak luminosity at 4000{AA} of M_4000_=-21.1mag and a spread of {sigma}=0.7mag.
PSYM-WIDE: planetary-mass companions to YMG members
Short Name:
J/AJ/154/129
Date:
21 Oct 2021
Publisher:
CDS
Description:
We present the results of a direct imaging survey for very large separation (>100 AU), low-mass companions around 95 nearby young K5-L5 stars and brown dwarfs. They are high-likelihood candidates or confirmed members of the young (~<150 Myr) {beta} Pictoris and AB Doradus moving groups (ABDMG) and the TW Hya, Tucana-Horologium, Columba, Carina, and Argus associations. Images in i' and z' filters were obtained with the Gemini Multi-Object Spectrograph (GMOS) on Gemini South to search for companions down to an apparent magnitude of z'~22-24 at separations >~20" from the targets and in the remainder of the wide 5.5'x5.5' GMOS field of view. This allowed us to probe the most distant region where planetary-mass companions could be gravitationally bound to the targets. This region was left largely unstudied by past high-contrast imaging surveys, which probed much closer-in separations. This survey led to the discovery of a planetary-mass (9-13 M_Jup_) companion at 2000 AU from the M3V star GU Psc, a highly probable member of ABDMG. No other substellar companions were identified. These results allowed us to constrain the frequency of distant planetary-mass companions (5-13 M_Jup_) to 0.84_-0.66_^+6.73^% (95% confidence) at semimajor axes between 500 and 5000 AU around young K5-L5 stars and brown dwarfs. This is consistent with other studies suggesting that gravitationally bound planetary-mass companions at wide separations from low-mass stars are relatively rare.
Luminous quasars at z>5.6 can be studied in detail with the current generation of telescopes and provide us with unique information on the first gigayear of the universe. Thus far, these studies have been statistically limited by the number of quasars known at these redshifts. Such quasars are rare, and therefore, wide-field surveys are required to identify them, and multiwavelength data are required to separate them efficiently from their main contaminants, the far more numerous cool dwarfs. In this paper, we update and extend the selection for the z~6 quasars presented in Banados+ (2014AJ....148...14B) using the Pan-STARRS1 (PS1) survey. We present the PS1 distant quasar sample, which currently consists of 124 quasars in the redshift range 5.6<~z<~6.7 that satisfy our selection criteria. Of these quasars, 77 have been discovered with PS1, and 63 of them are newly identified in this paper. We present the composite spectra of the PS1 distant quasar sample. This sample spans a factor of ~20 in luminosity and shows a variety of emission line properties. The number of quasars at z>5.6 presented in this work almost doubles the previously known quasars at these redshifts, marking a transition phase from studies of individual sources to statistical studies of the high-redshift quasar population, which was impossible with earlier, smaller samples.
We present the light curves of the hydrogen-poor superluminous supernovae (SLSNe I) PTF 12dam and iPTF 13dcc, discovered by the (intermediate) Palomar Transient Factory. Both show excess emission at early times and a slowly declining light curve at late times. The early bump in PTF 12dam is very similar in duration (~10days) and brightness relative to the main peak (2-3mag fainter) compared to that observed in other SLSNe I. In contrast, the long-duration (>30days) early excess emission in iPTF 13dcc, whose brightness competes with that of the main peak, appears to be of a different nature. We construct bolometric light curves for both targets, and fit a variety of light-curve models to both the early bump and main peak in an attempt to understand the nature of these explosions. Even though the slope of the late-time decline in the light curves of both SLSNe is suggestively close to that expected from the radioactive decay of ^56^Ni and ^56^Co, the amount of nickel required to power the full light curves is too large considering the estimated ejecta mass. The magnetar model including an increasing escape fraction provides a reasonable description of the PTF 12dam observations. However, neither the basic nor the double-peaked magnetar model is capable of reproducing the light curve of iPTF 13dcc. A model combining a shock breakout in an extended envelope with late-time magnetar energy injection provides a reasonable fit to the iPTF 13dcc observations. Finally, we find that the light curves of both PTF 12dam and iPTF 13dcc can be adequately fit with the model involving interaction with the circumstellar medium.