- ID:
- ivo://CDS.VizieR/J/A+A/611/A74
- Title:
- Angular differential imaging of MCW 758
- Short Name:
- J/A+A/611/A74
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Transition disks offer the extraordinary opportunity to look for newly born planets and investigate the early stages of planet formation. In this context we observed the Herbig A5 star MWC 758 with the L'-band vector vortex coronagraph installed in the near infrared camera and spectrograph NIRC2 at the Keck II telescope, with the aim of unveiling the nature of the spiral structure by constraining the presence of planetary companions in the system. Our high-contrast imaging observations show a bright ({Delta}L'=7.0+/-0.3mag) point-like emission, south of MWC 758 at a deprojected separation of ~20au (r=0.111"+/-0.004") from the central star. We also recover the two spiral arms (south-east and north-west), already imaged by previous studies in polarized light, and discover a third one to the south-west of the star. No additional companions were detected in the system down to 5 Jupiter masses beyond 0.6" from the star. We propose that the bright L' band emission could be caused by the presence of an embedded and accreting protoplanet, although the possibility of it being an asymmetric disk feature cannot be excluded. The spiral structure is probably not related to the protoplanet candidate, unless on an inclined and eccentric orbit, and it could be due to one (or more) yet undetected planetary companions at the edge of or outside the spiral pattern. Future observations and additional simulations will be needed to shed light on the true nature of the point-like source and its link with the spiral arms.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/725/200
- Title:
- An updated catalog of M31 globular-like clusters
- Short Name:
- J/ApJ/725/200
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present an updated UBVRI photometric catalog containing 970 objects in the field of M31, selected from the Revised Bologna Catalog (RBC v.4.0), including 965, 967, 965, 953, and 827 sources in the individual UBVRI bands, respectively, of which 205, 123, 14, 126, and 109 objects do not have previously published photometry. Photometry is performed using archival images from the Local Group Galaxies Survey, which covers 2.2deg^2^ along the major axis of M31. Detailed comparisons show that our photometry is fully consistent with previous measurements in all filters. We focus on 445 confirmed "globular-like" clusters and candidates, comprising typical globular and young massive clusters. The ages and masses of these objects are derived by comparing their observed spectral-energy distributions with simple stellar population synthesis. Approximately half of the clusters are younger than 2Gyr, suggesting that there has been significant recent active star formation in M31, which is consistent with previous results.
- ID:
- ivo://CDS.VizieR/J/AJ/157/242
- Title:
- An updated study of potential targets for Ariel
- Short Name:
- J/AJ/157/242
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Ariel has been selected as ESA's M4 mission for launch in 2028 and is designed for the characterization of a large and diverse population of exoplanetary atmospheres to provide insights into planetary formation and evolution within our Galaxy. Here we present a study of Ariel's capability to observe currently known exoplanets and predicted Transiting Exoplanet Survey Satellite (TESS) discoveries. We use the Ariel radiometric model (ArielRad) to simulate the instrument performance and find that ~2000 of these planets have atmospheric signals which could be characterized by Ariel. This list of potential planets contains a diverse range of planetary and stellar parameters. From these we select an example mission reference sample (MRS), comprised of 1000 diverse planets to be completed within the primary mission life, which is consistent with previous studies. We also explore the mission capability to perform an in-depth survey into the atmospheres of smaller planets, which may be enriched or secondary. Earth-sized planets and super-Earths with atmospheres heavier than H/He will be more challenging to observe spectroscopically. However, by studying the time required to observe ~110 Earth-sized/super-Earths, we find that Ariel could have substantial capability for providing in-depth observations of smaller planets. Trade-offs between the number and type of planets observed will form a key part of the selection process and this list of planets will continually evolve with new exoplanet discoveries replacing predicted detections. The Ariel target list will be constantly updated and the MRS re-selected to ensure maximum diversity in the population of planets studied during the primary mission life.
- ID:
- ivo://CDS.VizieR/J/A+AS/129/577
- Title:
- AO 0235+164 BVRI photometry
- Short Name:
- J/A+AS/129/577
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the results of the optical and radio monitoring of the BL Lac object AO 0235+164 during a faint state. In both optical and radio bands the source has been observed at the faintest ever recorded levels, reaching V=19.80 and F_22GHz_=0.34Jy. In the optical bands we still see variability with amplitudes up to 1.5 magnitudes on timescales from days to weeks. The radio variability is less dramatic, but in general follows the optical behaviour. A correlation between general trends in the optical and radio behaviour of AO 0235+164 may be recognized in the data from the present monitoring as well as in the historical light curves, suggesting a `base' mechanism responsible for the emission at both frequencies. A good candidate is a synchrotron process in the relativistic jet. Optical flares with no corresponding radio counterparts have been observed too. These events may be interpreted in terms of microlensing by a foreground galaxy.
- ID:
- ivo://CDS.VizieR/J/ApJ/806/248
- Title:
- AO imaging of KOIs with gas giant planets
- Short Name:
- J/ApJ/806/248
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- As hundreds of gas giant planets have been discovered, we study how these planets form and evolve in different stellar environments, specifically in multiple stellar systems. In such systems, stellar companions may have a profound influence on gas giant planet formation and evolution via several dynamical effects such as truncation and perturbation. We select 84 Kepler Objects of Interest (KOIs) with gas giant planet candidates. We obtain high-angular resolution images using telescopes with adaptive optics (AO) systems. Together with the AO data, we use archival radial velocity data and dynamical analysis to constrain the presence of stellar companions. We detect 59 stellar companions around 40 KOIs for which we develop methods of testing their physical association. These methods are based on color information and galactic stellar population statistics. We find evidence of suppressive planet formation within 20 AU by comparing stellar multiplicity. The stellar multiplicity rate (MR) for planet host stars is 0_-0_^+5^% within 20 AU. In comparison, the stellar MR is 18%+/-2% for the control sample, i.e., field stars in the solar neighborhood. The stellar MR for planet host stars is 34%+/-8% for separations between 20 and 200 AU, which is higher than the control sample at 12%+/-2%. Beyond 200 AU, stellar MRs are comparable between planet host stars and the control sample. We discuss the implications of the results on gas giant planet formation and evolution.
- ID:
- ivo://CDS.VizieR/J/ApJ/672/40
- Title:
- AO 0235+164 outburst in 2006 December
- Short Name:
- J/ApJ/672/40
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the results of polarimetric (R-band) and multicolor photometric (BVRIJHK) observations of the blazar AO 0235+16 during an outburst in 2006 December. The data reveal a short timescale of variability (several hours), which increases from optical to near-IR wavelengths; even shorter variations are detected in polarization. The flux density correlates with the degree of polarization, and at the maximum degree of polarization the electric vector tends to align with the parsec-scale jet direction. We find that a variable component with a steady power-law spectral energy distribution and very high optical polarization (30%-50%) is responsible for the variability. We interpret these properties of the blazar within a model of a transverse shock propagating down the jet. In this case a small change in the viewing angle of the jet, by ~<1{deg}, and a decrease in the shocked plasma compression by a factor of ~1.5 are sufficient to account for the variability.
- ID:
- ivo://CDS.VizieR/J/AJ/139/1360
- Title:
- AO Ser VR light curves
- Short Name:
- J/AJ/139/1360
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the first multiband photometry for the semidetached eclipsing binary AO Serpentis, observed on seven nights between 2009 April and July at the Weihai Observatory of Shandong University. By using the 2003 version of the Wilson-Devinney code, the photometric solutions of AO Ser and a similar object V338 Her were (re)deduced. The spectral types and orbital periods are A2 and P=0.8793-days for AO Ser, F1V and P=1.3057-days for V338 Her.
- ID:
- ivo://CDS.VizieR/J/ApJS/194/14
- Title:
- A Pan-Carina YSO catalog
- Short Name:
- J/ApJS/194/14
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a catalog of 1439 young stellar objects (YSOs) spanning the 1.42deg^2^ field surveyed by the Chandra Carina Complex Project (CCCP), which includes the major ionizing clusters and the most active sites of ongoing star formation within the Great Nebula in Carina. Candidate YSOs were identified via infrared (IR) excess emission from dusty circumstellar disks and envelopes, using data from the Spitzer Space Telescope (the Vela-Carina survey) and the Two-Micron All Sky Survey. We model the 1-24um IR spectral energy distributions of the YSOs to constrain physical properties. Our Pan-Carina YSO Catalog (PCYC) is dominated by intermediate-mass (2M_{sun}_<m<~10M_{sun}_) objects with disks, including Herbig Ae/Be stars and their less evolved progenitors. The PCYC provides a valuable complementary data set to the CCCP X-ray source catalogs, identifying 1029 YSOs in Carina with no X-ray detection. We also catalog 410 YSOs with X-ray counterparts, including 62 candidate protostars. Extrapolating over the stellar initial mass function scaled to the PCYC population, we predict a total population of >2x10^4^ YSOs and a present-day star formation rate (SFR) of >0.008M_{sun}_/yr. The global SFR in the Carina Nebula, averaged over the past ~5Myr, has been approximately constant.
- ID:
- ivo://CDS.VizieR/J/AJ/148/81
- Title:
- APASS BVgri photometry of RAVE stars. I. Data
- Short Name:
- J/AJ/148/81
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We provide AAVSO Photometric All-Sky Survey (APASS) photometry in the Landolt BV and Sloan g'r'i' bands for all 425743 stars included in the fourth RAVE Data Release. The internal accuracy of the APASS photometry of RAVE stars, expressed as the error of the mean of data obtained and separately calibrated over a median of four distinct observing epochs and distributed between 2009 and 2013, is 0.013, 0.012, 0.012, 0.014, and 0.021mag for the B, V, g', r', and i' bands, respectively. The equally high external accuracy of APASS photometry has been verified on secondary Landolt and Sloan photometric standard stars not involved in the APASS calibration process and on a large body of literature data on field and cluster stars, confirming the absence of offsets and trends. Compared with the Carlsberg Meridian Catalog (CMC-15), APASS astrometry of RAVE stars is accurate to a median value of 0.098arcsec. Brightness distribution functions for the RAVE stars have been derived in all bands. APASS photometry of RAVE stars, augmented by 2MASS JHK infrared data, has been {chi}^2^ fitted to a densely populated synthetic photometric library designed to widely explore temperature, surface gravity, metallicity, and reddening. Resulting T_eff_ and E_B-V_, computed over a range of options, are provided and discussed, and will be kept updated in response to future APASS and RAVE data releases. In the process, we find that the reddening caused by a homogeneous slab of dust, extending for 140pc on either side of the Galactic plane and responsible for E_B-V_^poles^=0.036+/-0.002 at the Galactic poles, is a suitable approximation of the actual reddening encountered at Galactic latitudes|b|>=25{deg}.
- ID:
- ivo://CDS.VizieR/J/ApJ/767/36
- Title:
- APEX observations of HOPS protostars
- Short Name:
- J/ApJ/767/36
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We perform a census of the reddest, and potentially youngest, protostars in the Orion molecular clouds using data obtained with the PACS instrument on board the Herschel Space Observatory and the LABOCA and SABOCA instruments on APEX as part of the Herschel Orion Protostar Survey (HOPS). A total of 55 new protostar candidates are detected at 70{mu}m and 160{mu}m that are either too faint (m_24_>7mag) to be reliably classified as protostars or undetected in the Spitzer/MIPS 24{mu}m band. We find that the 11 reddest protostar candidates with log{lambda}F_{lambda}_70/{lambda}F_{lambda}_24>1.65 are free of contamination and can thus be reliably explained as protostars. The remaining 44 sources have less extreme 70/24 colors, fainter 70{mu}m fluxes, and higher levels of contamination. Taking the previously known sample of Spitzer protostars and the new sample together, we find 18 sources that have log{lambda}F_{lambda}_70/{lambda}F_{lambda}_24>1.65; we name these sources "PACS Bright Red sources," or PBRs. Our analysis reveals that the PBR sample is composed of Class 0 like sources characterized by very red spectral energy distributions (SEDs; T_bol_<45K) and large values of sub-millimeter fluxes (L_smm_/L_bol_>0.6%). Modified blackbody fits to the SEDs provide lower limits to the envelope masses of 0.2-2M_{sun}_ and luminosities of 0.7-10L_{sun}_. Based on these properties, and a comparison of the SEDs with radiative transfer models of protostars, we conclude that the PBRs are most likely extreme Class 0 objects distinguished by higher than typical envelope densities and hence, high mass infall rates.