- ID:
- ivo://CDS.VizieR/J/A+A/603/A58
- Title:
- Full spectrum of Proxima Centauri
- Short Name:
- J/A+A/603/A58
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The discovery of Proxima b, a terrestrial temperate planet, presents the opportunity of studying a potentially habitable world in optimal conditions. A key aspect to model its habitability is to understand the radiation environment of the planet in the full spectral domain. We characterize the X-rays to mid-IR radiative properties of Proxima with the goal of providing the top-of-atmosphere fluxes on the planet. We also aim at constraining the fundamental properties of the star, namely its mass, radius, effective temperature and luminosity. We employ observations from a large number of facilities and make use of different methodologies to piece together the full spectral energy distribution of Proxima. In the high-energy domain, we pay particular attention to the contribution by rotational modulation, activity cycle, and flares so that the data provided are representative of the overall radiation dose received by the atmosphere of the planet.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/689/913
- Title:
- Fundamental planes of early-type galaxies
- Short Name:
- J/ApJ/689/913
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We derive the fundamental plane (FP) relation for a sample of 1430 early-type galaxies (ETGs) in the optical (r band) and the near-infrared (K band), by combining SDSS-DR5 and UKIDSS (UKIRT Infrared Deep Sky Survey, 2007MNRAS.379.1599L), second release data. With such a large, homogeneous data set, we are able to assess the dependence of the FP on the wave band. Our analysis indicates that the FP of luminous early-type galaxies is essentially wave band-independent, with its coefficients increasing at most by 8% from the optical to the NIR. This finding fits well into a consistent picture in which the tilt of the FP is not driven by stellar populations but results from other effects, such as nonhomology. In this framework, the optical and NIR FPs require more massive galaxies to be slightly more metal-rich than less massive ones, and to have highly synchronized ages, with an age variation per decade in mass smaller than a few percent.
- ID:
- ivo://CDS.VizieR/J/MNRAS/487/2771
- Title:
- Gaia-DR2 distance to the W3 Complex
- Short Name:
- J/MNRAS/487/2771
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Perseus Arm is the closest Galactic spiral arm from the Sun, offering an excellent opportunity to study in detail its stellar population. However, its distance has been controversial with discrepancies by a factor of two. Kinematic distances are in the range 3.9-4.2kpc as compared to 1.9-2.3kpc from spectrophotometric and trigonometric parallaxes, reinforcing previous claims that this arm exhibits peculiar velocities. We used the astrometric information of a sample of 31 OB stars from the star-forming W3Complex to identify another 37 W3 members and to derive its distance from their Gaia-DR2 parallaxes with improved accuracy. The Gaia-DR2 distance to the W3Complex, 2.14^+0.08^_-0.07_kpc, coincides with the previous stellar distances of ~2kpc. The Gaia-DR2 parallaxes tentatively show differential distances for different parts of the W3 Complex: W3 Main, located to the NE direction, is at 2.30^+0.19^_-0.16_kpc, the W3 Cluster (IC1795), in the central region of the complex, is at 2.17^+0.12^_-0.11_kpc, and W3(OH) is at 2.00^+0.29^_-0.23_kpc to the SW direction. The W3 Cluster is the oldest region, indicating that it triggered the formation of the other two star-forming regions located at the edges of an expanding shell around the cluster.
- ID:
- ivo://CDS.VizieR/J/MNRAS/427/3209
- Title:
- Galactic and MC O-AGBs and RSGs stars
- Short Name:
- J/MNRAS/427/3209
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We investigate the occurrence of crystalline silicates in oxygen-rich evolved stars across a range of metallicities and mass-loss rates. It has been suggested that the crystalline silicate feature strength increases with increasing mass-loss rate, implying a correlation between lattice structure and wind density. To test this, we analyse Spitzer Infrared Spectrograph and Infrared Space Observatory Short Wavelength Spectrometer spectra of 217 oxygen-rich asymptotic giant branch and 98 red supergiants in the Milky Way, the Large and Small Magellanic Clouds, and Galactic globular clusters. These encompass a range of spectral morphologies from the spectrally rich which exhibit a wealth of crystalline and amorphous silicate features to 'naked' (dust-free) stars. We combine spectroscopic and photometric observations with the GRAMS grid of radiative transfer models to derive (dust) mass-loss rates and temperature. We then measure the strength of the crystalline silicate bands at 23, 28 and 33{mu}m. We detect crystalline silicates in stars with dust mass-loss rates which span over 3dex, down to rates of ~10^-9^M_{sun}_/yr. Detections of crystalline silicates are more prevalent in higher mass-loss rate objects, though the highest mass-loss rate objects do not show the 23-{mu}m feature, possibly due to the low temperature of the forsterite grains or it may indicate that the 23-{mu}m band is going into absorption due to high column density. Furthermore, we detect a change in the crystalline silicate mineralogy with metallicity, with enstatite seen increasingly at low metallicity.
- ID:
- ivo://CDS.VizieR/J/MNRAS/473/3671
- Title:
- Galactic bubble infrared fluxes
- Short Name:
- J/MNRAS/473/3671
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In this paper, we present the first extended catalogue of far-infrared fluxes of Galactic bubbles. Fluxes were estimated for 1814 bubbles, defined here as the 'golden sample', and were selected from the Milky Way Project First Data Release (Simpson et al., 2012MNRAS.424.2442S, Cat. J/MNRAS/424/2442) The golden sample was comprised of bubbles identified within the Wide-field Infrared Survey Explorer (WISE) dataset (using 12- and 22-um images) and Herschel data (using 70-, 160-, 250-, 350- and 500-um wavelength images). Flux estimation was achieved initially via classical aperture photometry and then by an alternative image analysis algorithm that used active contours. The accuracy of the two methods was tested by comparing the estimated fluxes for a sample of bubbles, made up of 126 HII regions and 43 planetary nebulae, which were identified by Anderson et al. The results of this paper demonstrate that a good agreement between the two was found. This is by far the largest and most homogeneous catalogue of infrared fluxes measured for Galactic bubbles and it is a step towards the fully automated analysis of astronomical datasets.
- ID:
- ivo://CDS.VizieR/J/A+A/579/A76
- Title:
- Galactic bulge extremely reddened AGB
- Short Name:
- J/A+A/579/A76
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Extremely reddened asymptotic giant branch stars (AGB) lose mass at high rates of >10^-5^M_{sun}_/yr. This is the very last stage of AGB evolution, in which stars in the mass range ~2.0-4.0M_{sun}_ (for solar metallicity) should have been converted to C stars already. The extremely reddened AGB stars in the Galactic bulge are however predominantly O-rich, implying that they might be either low-mass stars or stars at the upper end of the AGB mass range. Our goal is to determine the mass range of the most reddened AGB stars in the Galactic bulge. Using Virtual Observatory tools, we constructed spectral energy distributions of a sample of 37 evolved stars in the Galactic bulge with extremely red IRAS colours. We fitted DUSTY models to the observational data to infer the bolometric fluxes. Applying individual corrections for interstellar extinction and adopting a common distance, we determined luminosities and mass-loss rates, and inferred the progenitor mass range from comparisons with AGB evolutionary models. The observed spectral energy distributions are consistent with a classification as reddened AGB stars, except for two stars, which are proto-planetary nebula candidates. For the AGB stars, we found luminosities in the range ~3000-30000L_{sun}_ and mass-loss rates ~10^-5^-3x10^-4^M_{sun}_/yr. The corresponding mass range is ~1.1-6.0M_{sun}_ assuming solar metallicity. Contrary to the predictions of the evolutionary models, the luminosity distribution is continuous, with many O-rich AGB stars in the mass range in which they should have been converted into C stars already. We suspect that bulge AGB stars have higher than solar metallicity and therefore may avoid the conversion to C-rich. The presence of low-mass stars in the sample shows that their termination of the AGB evolution also occurs during a final phase of very high mass-loss rate, leading to optically thick circumstellar shells.
- ID:
- ivo://CDS.VizieR/J/MNRAS/438/2839
- Title:
- Galactic Bulge Survey X-ray sources NIR ctp
- Short Name:
- J/MNRAS/438/2839
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report on the near-infrared matches, drawn from three surveys, to the 1640 unique X-ray sources detected by Chandra in the Galactic Bulge Survey (GBS). This survey targets faint X-ray sources in the bulge, with a particular focus on accreting compact objects. We present all viable counterpart candidates and associate a false alarm probability (FAP) to each near-infrared match in order to identify the most likely counterparts. The FAP takes into account a statistical study involving a chance alignment test, as well as considering the positional accuracy of the individual X-ray sources. We find that although the star density in the bulge is very high, ~90 per cent of our sources have an FAP<10 per cent, indicating that for most X-ray sources, viable near-infrared counterparts candidates can be identified. In addition to the FAP, we provide positional and photometric information for candidate counterparts to ~95 per cent of the GBS X-ray sources. This information in combination with optical photometry, spectroscopy and variability constraints will be crucial to characterize and classify secure counterparts.
- ID:
- ivo://CDS.VizieR/J/A+A/493/785
- Title:
- Galactic disk stellar populations from ISOGAL
- Short Name:
- J/A+A/493/785
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We identify the stellar populations (mostly red giants and young stars) detected in the ISOGAL survey at 7 and 15um towards a field (LN45) in the direction l=-45, b=0.0. The sources detected in the survey of the Galactic plane by the Infrared Space Observatory were characterised based on colour-colour and colour-magnitude diagrams. We combine the ISOGAL catalogue with the data from surveys such as 2MASS and GLIMPSE. Interstellar extinction and distance were estimated using the red clump stars detected by 2MASS in combination with the isochrones for the AGB/RGB branch. Absolute magnitudes were thus derived and the stellar populations identified from their absolute magnitudes and their infrared excess. A standard approach to analysing the ISOGAL disc observations has been established. We identify several hundred RGB/AGB stars and 22 candidate young stellar objects in the direction of this field in an area of 0.16deg^2^. An overdensity of stellar sources is found at distances corresponding to the distance of the Scutum-Crux spiral arm. In addition, we determined mass-loss rates of AGB-stars using dust radiative transfer models from the literature.
- ID:
- ivo://CDS.VizieR/J/ApJ/653/1325
- Title:
- Galactic distribution of infrared dark clouds
- Short Name:
- J/ApJ/653/1325
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Using ^13^CO(J=1-0) molecular line emission (112GHz) from the Boston University-Five College Radio Astronomy Observatory Galactic Ring Survey (BU-FCRAO GRS), we have established kinematic distances to 313 infrared dark clouds (IRDCs) by matching the morphology of the molecular line emission in distinct velocity channels to their mid-infrared extinction.
- ID:
- ivo://CDS.VizieR/J/ApJ/680/349
- Title:
- Galactic distribution of IRDCs
- Short Name:
- J/ApJ/680/349
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- CS(2-1) measurements toward a large sample of fourth Galactic quadrant infrared dark clouds (IRDCs) were made with the Australia Telescope National Facility Mopra telescope in order to establish their kinematic distances and Galactic distribution. Due to its large critical density, CS unambiguously separates the dense IRDCs from more diffuse giant molecular clouds. The fourth-quadrant IRDCs show a pronounced peak in their radial galactocentric distribution at R=6kpc. The first-quadrant IRDC distribution (traced by ^13^CO emission) also shows a peak, but at a galactocentric radius of R=5kpc rather than 6kpc. The reliability of the MSX IRDC catalog by Simon and coworkers is estimated by using the CS detection rate of IRDC candidates. The overall reliability is at least 58%, and increases to near 100% for high contrasts, Galactic longitudes within ~30{deg} of the Galactic center, and large mid-IR backgrounds. A significant fraction of our IRDC sample (14%) showed two CS velocity components, which probably represent two distinct IRDCs along the same line of sight.